(Towards) Bridge multisections for symplectic surfaces in Weinstein 4-manifolds

Melissa Zhang (UC Davis)

in collaboration with Román Aranda, Patricia Cahn, Marion Campisi, James Hughes, Daniela Cortes Rodriguez, and Agniva Roy

$$
\text { a.k.a. }\left[\mathrm{ACC}^{+}\right]
$$

$$
\text { JMM } 2024
$$

AMS-AWM Special Session for Women and Gender Minorities in Symplectic and Contact Geometry and Topology

Information

$$
\begin{gathered}
\text { Wednesday, January 3, } 2024 \\
\text { 3:00 PM - 3:30 PM } \\
\text { Room } 023 \text { (Exhibition Level, The Moscone Center) }
\end{gathered}
$$

Abstract

Islambouli and Starkston describe two algorithms for encoding Weinstein 4-manifolds using multisections with divides. In this talk, we report on progress toward encoding embedded symplectic surfaces in their construction, by adapting Meier and Zupan's bridge trisection techniques to the symplectic setting. This is joint work with Román Aranda, Patricia Cahn, Agniva Roy, James Hughes, Marion Campisi, and Daniela Cortes Rodriguez.

Describing Smooth 3- and 4-Manifolds

We will start by discussing the bolded terms below.

To capture the smooth structure of a \ldots	we have a diagrammatic tool:
3-manifold Y^{3}	Heegaard diagram \mathcal{H} [Morse, Smale, Singer]
1-manifold L properly em- bedded in Y^{3}	pairs of basepoints z in the Heegaard di- agram \mathcal{H} [Ozsváth-Szabo, Rasmussen]
4-manifold X^{4}	trisection diagram \mathcal{T} [Gay-Kirby]
2-manifold F embedded in X^{4}	properly
bridge trisections [Meier-Zupan]	

Note that all smooth 3- and 4-manifolds have handle decompositions.

Heegaard Splittings and Diagrams

Let Y^{3} be a closed, connected, oriented

3-manifold.
A Heegaard splitting for Y^{3} is a decomposition $Y^{3}=H_{1} \cup_{\Sigma_{g}} H_{2}$ where

- $\Sigma_{g}=H_{1} \cap H_{2}$ is a genus g orientable surface
- $H_{i} \cong দ_{g} S^{1} \times D^{2}$

A compatible Heegaard diagram for the
Σg
H. Heegaard splitting $\left(\Sigma_{g}, H_{1}, H_{2}\right)$ is a collection $\left(\Sigma_{g}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right)$ where

- $\boldsymbol{\alpha}=\left\{\alpha_{1}, \ldots, \alpha_{g}\right\}$ is a collection of red attaching circles for H_{1} and
- $\boldsymbol{\beta}=\left\{\beta_{1}, \ldots, \beta_{g}\right\}$ is a collection of blue attaching circles for H_{2}

Trisections [Gay-Kirby]

Let X^{4} be a closed, connected, oriented 4manifold.
Simplified definition for the purposes of this talk:
A trisection of X^{4} is a decomposition $X^{4}=$ $X_{1} \cup X_{2} \cup X_{3}$ where

- $X_{i} \cong দ_{g} S^{1} \times D^{3}\left(X_{i} \cong দ_{k_{i}} S^{1} \times D^{3}\right)$
- $H_{i}:=X_{i} \cap X_{i+1} \cong \natural_{g} S^{1} \times D^{2}$ for $i=1, \ldots, n-1$
- $\Sigma_{g}:=X_{1} \cap \cdots \cap X_{n}=\partial H_{i}$ for all i

Generalizations [Islambouli-Naylor]

- bisection (every smooth, compact, connected 2-handlebody with connected boundary has one)
- multisection (The term multisection is overloaded, but the meaning should be clear from context.)

Bridge Trisections [Meier-Zupan]

Theorem [Meier-Zupan]

Any smoothly embedded surface $F \subset X^{4}$ can be isotoped to be in bridge position with respect to a given trisection of X^{4}

For the sake of this talk, let us focus on $X^{4}=S^{4}$.

Bridge Trisections [Meier-Zupan]

A (balanced) $(b ; c)$ bridge trisection \mathcal{T} of a knotted surface $F \subset S^{4}$ is a decomposition $\left(S^{4}, F\right)=\left(X_{1}, D_{1}\right) \cup\left(X_{2}, D_{2}\right) \cup\left(X_{3}, D_{3}\right)$ where

- $S^{4}=X_{1} \cup X_{2} \cup X_{3}$ is the standard genus 0 trisection of S^{4}
- $\left(X_{i}, D_{i}\right)$ is a trivial c-disk system
- $\left(B_{i j}, \alpha_{i j}\right):=\left(X_{i}, D_{i}\right) \cap\left(X_{j}, D_{j}\right)$ is a b-strand trivial tangle

"Trivial?"
- trivial tangle: one can simultaneously push every component to the boundary $S^{2}=\partial B^{3}$ (the bridge sphere)
- trivial disk system: one can
 simultaneously push every disk to the boundary $S^{3}=\partial B^{4}$

Bridge Trisections [Meier-Zupan]

A tri-plane diagram P is a triple of b-strand trivial tangle diagrams $\left(P_{12}, P_{23}, P_{31}\right)$ where $P_{i j} \cup \overline{P_{k i}}$ is a diagram for an unlink L_{i}. Here $\overline{P_{k i}}$ is the the mirror of the tangle diagram $P_{k i}$.

Describing Contact 3-Manifolds and Symplectic 4-Manifolds

We now add contact / symplectic structure.

To capture the structure of a \ldots	we have a diagrammatic tool:
contact 3-manifold $\left(Y^{3}, \xi\right)$	contact Heegaard diagram (\mathcal{H}, D) [Giroux, Torisu]
transverse knot in $\left(Y^{3}, \xi\right)$	pairs of basepoints \mathbf{z} in the Heegaard diagram (\mathcal{H}, D)
symplectic 4-manifold X^{4}	Weinstein trisections [Lambert- Cole-Meier-Starkston]
Weinstein domain $\left(W^{4}, \omega\right)$	multisection with divides [Islambouli-Starkston]
ascending symplectic sur- face $F \hookrightarrow\left(W^{4}, \omega, \rho, V_{\rho}\right)$	bridge multisections with di- vides [ACC, in progress]

Contact Heegaard Splittings [Giroux, Torisu]

A contact Heegaard splitting of $\left(Y^{3}, \xi\right)$ is a Heegaard splitting $Y^{3}=H_{1} \cup \Sigma_{g} H_{2}$ such that

- $\Sigma_{g}:=H_{1} \cap H_{2}$ is a convex surface with dividing set Γ_{Σ}
- H_{i} is contactomorphic to a standard neighborhood of its Legendrian spine (i.e. core graph) L_{i}.

In this case, we (nontrivially!) have:

- H_{1} and H_{2} are actually two halves of an open-book decomposition supporting $\left(Y^{3}, \xi\right)$
- For each H_{i}, there is a set of compression disks cutting H_{i} into a ball such that the boundary of each compression disk intersects Γ_{Σ} in exactly two points. In other words, the red α_{i} and blue β_{i} can be chosen to each intersect Γ_{Σ} at exactly two points.

Transverse links

Theorem [Pavelescu]

Any transverse link in a contact 3-manifold (Y^{3}, ξ) with compatible open book (S, ϕ) can be isotoped to be transverse to the pages of the open book.

In other words, the transverse link can be iso-
 toped through transverse links until it is braided with respect to the open book.

Multisections with Divides for Weinstein Domains [Islambouli-Starkston]

Let (W, ω) be a symplectic filling for its contact boundary $(\partial W, \xi)$.
A multisection with divides for (W, ω) is a decomposition $W=W_{1} \cup \cdots \cup W_{n}$ where

- $W_{i} \cong \mathfrak{b}_{k_{i}} S^{1} \times D^{2}$
- $H_{i+1}:=W_{i} \cap W_{i+1} \cong \mathfrak{q}_{g} S^{2} \times D^{2}$ for $i=1, \ldots, n-1$
- $\Sigma_{g}:=W_{1} \cap \cdots \cap W_{n}=\partial H_{i}$ for all i
- each $\left(W_{i}, \omega \mid W_{i}\right)$ is a symplectic filling of $\left(\partial W_{i}, \xi_{i}\right)$ $\cong \# k_{i} S^{1} \times S^{2}$; filling is essentially unique, and Weinstein
- $H_{i} \cup H_{i+1}$ is a contact Heegaard splitting of $\left(\partial W_{i}, \xi_{i}\right)$
- $H_{1} \cup H_{n+1}$ is a contact Heegaard splitting of $(\partial W, \xi)$

Bridge Multisections Analogue for Ascending Symplectic Surfaces

We $\left[\mathrm{ACC}^{+}\right]$are working on adapting Meier-Zupan's strategy to construct bridge multisections with divides for certain nicely embedded symplectic surfaces in some of Islambouli-Starkston's multisected Weinstein domains.

Ascending Symplectic Surfaces [Hayden]

Let $\left(W^{4}, \omega, \rho, V_{\rho}\right)$ be a Weinstein domain (ρ is the Morse function). A smoothly embedded oriented surface $(F, \partial F) \subset(W, \partial W)$ is ascending if

- F contains no critical points of $\rho: W \rightarrow \mathbb{R}$
- $\left.\rho\right|_{F}$ is a Morse function
- each non-critical level set $\left.\rho\right|_{F} ^{-1}(c) \subset F$ is positively transverse to the contact structure on $\rho^{-1}(c) \subset W$.
[Boileau-Orevkov] studied the B^{4} case.

Ascending Symplectic Surfaces [Hayden]

If the ascending surface only has positive critical points, then the transverse link at every critical level is quasipositive.

We can then view each surface as a movie of quasipositive braid closures featuring

- transverse isotopy
- quasipositive band moves
- symplectic births.

The Case of $\left(W^{4}, \omega\right)=\left(B^{4}, \omega_{\text {std }}\right)$

Consider the standard $\left(B^{4}, \omega_{s t d}\right)$ with boundary $\left(S^{3}, \xi_{\text {rot }}\right)$.

- page of open book $\cong D^{2}$
- transverse links = braid closures
- dividing set $=$ braid axis
[Boileau-Orevkov] The quasipositive braided boundary determines a unique symplectic filling.

The Case of $\left(W^{4}, \omega\right)=\left(B^{4}, \omega_{\text {std }}\right)$

(1) Arrange the quasipositive band moves in different sectors of the multisection to ensure transverse unlinks (consisting of maximal self-linking unknots) on the boundary of each sector.

- For example, if braids β_{1} and β_{2} differ at only one positive crossing, then $\beta_{1} \cup \overline{\beta_{2}}$ is indeed isotopic to a transverse unlink with max sl components.
(2) Such an unlink bounds a unique collection of trivial symplectic disks in B^{4}.
(3) We can also reduce the number of sectors (to a bisection), by positively stabilizing (a lot) and arranging the quasipositive bands to interact with disjoint pairs of strands.
 to a bisection), by positively stabilizing (a

There's a lot more to do in the general case.

Thank you for listening!

