MAT 250B HW08

[add your name here]

Due Friday, 3/1/24 at 11:59 pm on Gradescope

Exercise 1

Let $V = Mat_{2 \times 2}(\mathbb{R})$. Define a form on V by

$$\langle A, B \rangle = \operatorname{Tr}(AB)$$

where Tr is the trace.

- (a) Show that this is a symmetric bilinear form.
- (b) Find the inner product matrix with respect to the standard basis

$$\left\{e_{11} = \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}, \quad e_{12} = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}, \quad e_{21} = \begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix}, \quad e_{22} = \begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}\right\}$$

(c) Determine the rank and signature of this form.

Exercise 2

Let V be the real vector space consisting of real polynomials of degree $\leq N$. Define a form on V by

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x) \ dx.$$

- (a) Show that $\langle \cdot, \cdot \rangle$ is a bilinear form on V.
- (b) Prove that $\langle \cdot, \cdot \rangle$ is symmetric and non-degenerate.
- (c) For N = 2, find a basis for V so that the inner product matrix is a diagonal matrix with ± 1 along the diagonal.

Exercise 3

Let R be a commutative ring.

(a) Let m and n_i $(1 \le i \le k)$ be elements of an R-module M. Prove that

$$m \wedge n_1 \wedge n_2 \wedge \cdots \wedge n_k = (-1)^k n_1 \wedge n_2 \wedge \cdots \wedge n_k \wedge m.$$

(b) Prove that if F is a free R-module of rank n, then $\bigwedge^{i}(F)$ is a free R-module of rank $\binom{n}{i}$.