MAT 250B HW08

[add your name here]

Due Friday, 3/1/24 at 11:59 pm on Gradescope

Exercise 1

Let $V=\operatorname{Mat}_{2 \times 2}(\mathbb{R})$. Define a form on V by

$$
\langle A, B\rangle=\operatorname{Tr}(A B)
$$

where Tr is the trace.
(a) Show that this is a symmetric bilinear form.
(b) Find the inner product matrix with respect to the standard basis

$$
\left\{e_{11}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad e_{12}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad e_{21}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad e_{22}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} .
$$

(c) Determine the rank and signature of this form.

Exercise 2

Let V be the real vector space consisting of real polynomials of degree $\leq N$. Define a form on V by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

(a) Show that $\langle\cdot, \cdot\rangle$ is a bilinear form on V.
(b) Prove that $\langle\cdot, \cdot\rangle$ is symmetric and non-degenerate.
(c) For $N=2$, find a basis for V so that the inner product matrix is a diagonal matrix with ± 1 along the diagonal.

Exercise 3

Let R be a commutative ring.
(a) Let m and $n_{i}(1 \leq i \leq k)$ be elements of an R-module M. Prove that

$$
m \wedge n_{1} \wedge n_{2} \wedge \cdots \wedge n_{k}=(-1)^{k} n_{1} \wedge n_{2} \wedge \cdots \wedge n_{k} \wedge m
$$

(b) Prove that if F is a free R-module of rank n, then $\bigwedge^{i}(F)$ is a free R-module of rank $\binom{n}{i}$.

