MAT 250B HW09

[add your name here]
Due Friday, $3 / 8 / 24$ at $11: 59 \mathrm{pm}$ on Gradescope

Exercise 1

Determine whether the following polynomials are irreducible in the rings indicated. For those that are reducible, determine their factorization into irreducibles.
(a) $x^{2}+x+1$ in $\mathbb{F}_{2}[x]$
(b) $x^{3}+x+1$ in $\mathbb{F}_{3}[x]$
(c) $x^{4}+1$ in $\mathbb{F}_{5}[x]$
(d) $x^{4}+10 x^{2}+1$ in $\mathbb{Z}[x]$
(e) $x^{4}-4 x^{3}+6$ in $\mathbb{Z}[x]$

Exercise 2

Determine the degree of the following elements over \mathbb{Q}.
(a) $2+\sqrt{3}$
(b) $1+\sqrt[3]{2}+\sqrt[3]{4}$
(c) $\sqrt{3+2 \sqrt{2}}$
(d) $\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}}$

Exercise 3

Suppose $F=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ where $\alpha_{i}^{2} \in \mathbb{Q}$ for $i=1,2, \ldots, n$. Prove that $\sqrt[3]{2} \notin F$.

Exercise 4

Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Conclude that $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]=4$. Find the minimal polynomial of $\alpha=\sqrt{2}+\sqrt{3}$ over \mathbb{Q}.

Exercise 5

Determine the splitting field and its degree over \mathbb{Q} for the following polynomials.
(a) $x^{4}-2$
(b) $x^{4}+2$
(c) $x^{4}+x^{2}+1$
(d) $x^{6}-4$

Exercise 6

For any prime p and any nonzero $a \in \mathbb{F}_{p}$, prove that $x^{p}-x+a$ is irreducible and separable over \mathbb{F}_{p}. Hint: Prove that if α is a root then $\alpha+1$ is also a root.

Exercise 7

Prove that $f(x)^{p}=f\left(x^{p}\right)$ for any polynomial $f(x) \in \mathbb{F}_{p}[x]$.

