MAT 250B HW10

[add your name here]
Due Friday, 3/15/24 at 11:59 pm on Gradescope

Exercise 1

Let σ_{p} denote the Frobenius map $a \mapsto a^{p}$ on the finite field $\mathbb{F}_{p^{n}}$. Verify that σ_{p} is an automorphism of $\mathbb{F}_{p^{n}}$, and that the order of σ_{p} is n.

Exercise 2

Let $\mu_{n} \subset \mathbb{C}$ denote the set of nth roots of unity. The n-th cyclotomic polynomial is

$$
\Phi_{n}(x)=\prod_{\text {primitive }}^{\zeta \in \mu_{n}}(x-\zeta) .
$$

Fact $\Phi_{n}(x)$ is an irreducible monic polynomial in $\mathbb{Z}[x]$. Hence $\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right]=\phi(n)$.
Unfortunately, we don't have time to talk about the proof of this in class. You can find the proof in various textbooks, and already have the tools to understand the proof.

Observations

1. $x^{n}-1=\prod_{\zeta \in \mu_{n}}(x-\zeta)=\prod_{\left.d\right|_{n}} \prod_{\text {primitive }}^{\zeta \in \mu_{d}}(x-\zeta)=\prod_{\left.d\right|_{n}} \Phi_{d}(x)$
2. $\operatorname{deg} \Phi_{n}(x)=\phi(n)$, where ϕ is Euler's totient function.

Over \mathbb{F}_{p} Let p be a prime. The splitting field of $x^{n}-1$ contains all the n-th roots of unity $\mu_{n} \subset \overline{\mathbb{F}}_{p}$. The observations above still hold, since we are just taking the coefficients of polynomials $\bmod p$.

If $a \in \mathbb{F}_{p^{n}}^{\times}$and $|a|=m$, then we still have $\Phi_{m}(a)=0$. But also, for all $d<m, \Phi_{d}(a) \neq 0$ since a is not a d th root of $1 \in \mathbb{F}_{p}$. So $\Phi_{m}(x)=m_{a, \mathbb{F}_{p}}(x)$ still holds.
(a) Determine $\Phi_{p}(x) \in \mathbb{Z}[x]$. Then, for p prime, show that $\Phi_{p}(x) \equiv(x-1)^{p-1} \bmod p$. This should be a fairly short explanation.
(b) Prove that if $d\left|\left(p^{n}-1\right)=\left|\mathbb{F}_{p^{n}}^{\times}\right|\right.$, then $\Phi_{d}(x) \in \mathbb{F}_{p}[x]$ has exactly $\phi(d)$ roots in $\mathbb{F}_{p^{n}}^{\times}$.

Hint: These roots are precisely the primitive dth roots of unity over \mathbb{F}_{p}. Use the fact that $\left|\mathbb{F}_{p^{n}}^{\times}\right|=p^{n}-1=\sum_{d \mid p^{n-1}} \phi(d)$.
(c) Prove that n divides $\phi\left(p^{n}-1\right)$. Hint: Think about $\operatorname{Aut}\left(\mathbb{F}_{p^{n}}^{\times}\right)$.

Exercise 3

Let $d, n \in \mathbb{N}$.
(a) Prove that $d \mid n$ if and only if $x^{d}-1$ divides $x^{n}-1$.

Hint: If $n=q d+r$, then $x^{n}-1=\left(x^{q d+r}-x^{r}\right)+\left(x^{r}-1\right)$.
(b) Prove that for any $a \in \mathbb{N}$,

$$
d \mid n \quad \text { if and only if } \quad a^{d}-1 \mid a^{n}-1
$$

(c) Conclude that $\mathbb{F}_{p^{d}} \subseteq \mathbb{F}_{p^{n}}$ if and only if $d \mid n$.

Exercise 4

Compute the Galois groups of the following polynomials over the given fields.
(a) $x^{8}-x$ over \mathbb{Q}
(b) $x^{8}-x$ over \mathbb{F}_{2}
(c) $x^{4}-1$ over \mathbb{F}_{7}

Exercise 5

Let p be a prime. Determine the elements of the Galois group of $x^{p}-2 \in \mathbb{Q}[x]$.

