MAT 250B Winter 2024 Instructor: Melissa Zhang **Final Exam**

By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else:

 Name (sign):
 Name (print):

Policies

- This is a **closed-book** exam. You may not use the textbook, cheat sheets, notes, or any other outside material. No calculators, computers, phones, or any other electronics are allowed.
- You have **2** hours to complete this exam. If you are done early, you may leave after handing in your exam packet.
- Everyone must work on their own exam. Any suspicions of collaboration, copying, or otherwise violating the Student Code of Conduct will be forwarded to the Student Judicial Board.

Instructions

- 1. Use scratch paper to work out the problems.
- 2. Write down your solutions on the provided paper, **clearly marking where your solutions** for each question begins. Please write legibly and coherently; otherwise style points may be deducted.
- 3. Submit this exam cover sheet and your solutions to me, in order, so that I can paper clip them. Do not submit any scratchwork.

- 1. (20 points) Let F be a free Z-module. Prove that $\bigcap_{n=1}^{\infty} nF = 0$.
- 2. (40 points) Consider the \mathbb{Z} -module $\mathbb{Q} \oplus \mathbb{Z}$.
 - (a) Prove that $\mathbb{Q} \oplus \mathbb{Z}$ is flat.
 - (b) Prove that Q ⊕ Z is neither projective nor injective.
 Hint: You may use the result of Question 1.
- 3. (20 points) Let A be an invertible, real, skew symmetric matrix. Prove that A^2 is symmetric and negative definite.
- 4. (20 points) Let m = p^k (p prime, k ∈ N), and suppose d | m − 1. Prove that the cyclotomic polynomial Φ_d(x) has φ(d) roots in F_m.
 Recall that φ is Euler's totient function: φ(d) = #{1 ≤ k ≤ d : gcd(k,d) = 1}.
- 5. (40 points) Let $\alpha = \sqrt{1 + \sqrt{2}} \in \mathbb{C}$.
 - (a) Determine the minimal polynomial of α over \mathbb{Q} .
 - (b) Determine the Galois closure of $\mathbb{Q}(\alpha)$ over \mathbb{Q} .
- 6. (60 points) Let $f(x) = x^4 + 1$.
 - (a) Factor f(x) into irreducibles in $\mathbb{Z}[x]$ and $\mathbb{F}_3[x]$.
 - (b) Determine the Galois group of f(x) over \mathbb{Q} .
 - (c) Determine the Galois group of f(x) over \mathbb{F}_3 .