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1. Introduction

These notes will be changing during the course. They will likely start
out quite informal and become more formal with iteration.

The goal is to take a journey through areas in/around Khovanov homol-
ogy, to see some open problems, and also to see the algebraic and topolog-
ical tools in action. For me, Khovanov homology has been a great way to
learn a little bit from a lot of different areas, including homological algebra,
algebraic geometry, symplectic geometry, homotopy theory, and of course
low-dimensional topology.

1.1. Master list of topics. Here’s a list of topics. We will not get to all
of these; this is just a master list, which will help guide the pace of our
lectures and also provide potential final project ideas.

• Jones polynomial to Khovanov homology
• TQFT, Frobenius algebra, Bar-Natan category, functoriality
• computation*; torsion*
• deformations, web-foam generalizations
• Rasmussen-Lee spectral sequence, Karoubi envelope; Piccirillo and
the Conway knot

• ribbon cobordisms
• reduced theory, relation to gauge/Floer theories, knot detection
• odd khovanov homology; Szabó geometric spectral sequence
• tangles and representations (Khovanov, Chen-Khovanov)
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• annular, Legendrian, and transverse topology applications
• symplectic Khovanov homology; Cautis-Kamnizer, Anno, Anno-
Nandakumar

• physical interpretations* (Witten, Gukov, Aganagic)
• spectrification (Lipshitz-Sarkar, Lawson-Lipshitz-Sarkar, Hu-Kriz-
Kriz*)

• skein lasagna modules (Morrison-Walker-Wedrich, Manolescu-Neithalath)
• immersed curves (Kotelskiy-Watson-Zibrowius)

* Topics marked with an asterisk (*) are those that I will almost definitely
not be lecturing about, or will only touch upon briefly.

Aside 1.1.1. This list has so far been populated from the following sources:

(1) the topics I personally feel are fundamental
(2) Khovanov-Lipshitz’s recent survey [KL23]
(3) chatting with you all

Remark 1.1.2. Turner’s A Hitchhiker’s Guide to Khovanov Homology
contains exposition for a few of the topics above. (add: citation)

2. Knots and Topology

2.1. Knots and links. If you want to learn more about knots in S3, Rolf-
sen is a great resource. There is also a little green book by Livingston that
also seems really useful. (add: references)

A knot is sometimes defined as a smooth embedding S1 ↪→ S3.
Notice that we can

• reparametrize the embedding, preserving the image setwise
• perform an ambient isotopy on the knot (‘isotop’ the knot)

Definition 2.1.1. Let K,K ′ : S1 ↪→ S3 be two smooth embeddings. We
say K and K ′ are (smoothly, ambiently) isotopic if there exists a smooth
family of diffeomorphisms

{φt : S
3 → S3}t∈[0,1]

such that φ0 = id and φ(1) ◦K = K ′.

Remark 2.1.2. Convince yourself of the following:

(1) “Ambiently isotopic” is an equivalence relation. The equivalence
classes are called isotopy classes of knots.

(2) In other words, an ambient isotopy smoothly morphs the embed-
dingK into the embeddingK ′, through a family of diffeomorphisms
of S3.

(3) An order-preserving reparametrization is an ambient isotopy.

Remark 2.1.3. In practice, when I say knot, I’m probably referring to
either (1) the image of the knot in S3 or (2) an entire isotopy class.

Example 2.1.4. ‘The’ unknot U is the equivalence class of the standard
embedding S1 ↪→ R2 ↪→ R3 ↪→ S3.

Definition 2.1.5. Any diffeomorphic copy of S1 can have two possible
orientations. The orientation of a knot is given by the direction dK

dθ .
1

Definition 2.1.6. The reverse Kr (also denoted K̄) of a knot K is the2

knot obtained by precomposing K with an order-reversing diffeomorphism
ρ : [0, 1]→ [0, 1].

Let τ be an orientation-reversing diffeomorphism of S3. The mirror of
a knot K is the knot m(K) = τ ◦K.

Remark 2.1.7. An unoriented knot is just the knot after you forget about
the orientation. You can think of this as the union of the isotopy classes of
K and K̄.

1This is terrible notation and should not ever appear again, because of how we use

the term ‘knot’; see Remark 2.1.3.
2By using the article ‘the’, I’m using the term ‘knot’ in the sense of Remark 2.1.3

(2).

https://arxiv.org/pdf/1409.6442
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Exercise 2.1.8. First observe that the orientation of S3 does not reverse
under isotopy.

Prove that

• In general, m(K) is not necessarily isotopic to K, even if we treat
them as unoriented knots. You can prove this via a (counter)example.
Proving this directly is hard. Use the Jones polynomial, introduced
in Section 2.3.

• In general, Kr is not necessarily isotopic to K. There is no general
algorithm for determining when K ̸∼ Kr! For this problem, do a
search online and see if you can an example in the literature, as
well as the relevant terms for describing this kind of symmetry.

Then, find examples of knots K that do happen to satisfy the following,
and exhibit an explicit isotopy:

• K ∼ Kr

• K ∼ m(K)

Diagrammatically exhibit the isotopy by applying Reidemeister moves; see
Section 2.2. If there’s an obvious part of the isotopy that’s easy to describe
but takes a lot of Reidemeister moves, you can just note what you’re doing
between two pictures.

Exercise 2.1.9. (Important) A link with ℓ ∈ Z≥0 components is a smooth
embedding

L :

ℓ∐
i=1

S1 ↪→ S3

The link with zero components is called the empty link. The ith component
is the embedding of the ith copy of S1 into S3.

All of the definitions above can be generalized to links. Write down
definitions for the following:

(1) oriented link L = (L, o) If we want to be explicit about the orien-
tation of a link, we use the letter o for the orientation information.

(2) unoriented (isotopy class of) L
(3) m(L), the mirror of a link L
(4) Lr, the reverse of an oriented link (L, o)

How many orientations does a link with ℓ components have?

Remark 2.1.10. There are also other categories of links, such as topological
links and wild links. We won’t talk about these until, maybe, far later in
the course.

2.2. Link diagrams and Reidemeister moves. We will now start abus-
ing notation and language without comment, per Remark 2.1.3.

We’ve so far been implicitly using link diagrams to draw links. More
formally, a link diagram is a compact projection of a representative of a
link L onto the xy-plane such that the only intersections are transverse
double points.

For example, here are some bad singularities:

Theorem 2.2.1 (Reidemeister, (add: cite), 1930s). If D and D′ are two
diagrams of the same link, then they are related by a finite sequence of the
following moves:

(R1)
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(R2)

(R3)

Remark 2.2.2. (1) These are local pictures. You can rotate them.
(2) Note that there are technically many cases within each ‘move’, if

you consider all the possible orientations of the interacting strands
in these local pictures. This is important when producing invariants
for oriented links.

(3) If D and D′ are diagrams for the same link, then we will sometimes
write D ∼ D′. In other words, “there exists a sequence of Reide-
meister moves between” is an equivalence relations on the set of
link diagrams.

Exercise 2.2.3. (Unimportant) Explain why we don’t need to include the
following local move:

Definition 2.2.4. A link invariant F valued in a category C is a machine
that

• takes in a link diagram D
• and outputs F (D) ∈ Ob(C)

such that
D ∼ D′ =⇒ F (D) = F (D′).

Remark 2.2.5. Note that a link invariant is not necessarily a functor. We
will define the categories Link and LinkDiag, and define functorial link
invariants later.

2.3. Jones polynomial via skein relation. Khovanov homology is a
categorical lift of the Jones polynomial, so we will focus on this invariant
first.

Remark 2.3.1. The first polynomial invariant of links was the Alexander
polynomial, introduced in the 1920s. We will not discuss the Alexander
polynomial until needed later.

The Jones polynomial was discovered by Vaughan Jones in the 1980s,
and arose from his work in statistical mechanics. We will not study the
original definition of his invariant, but you are welcome to look into it if it
interests you. Perhaps a final project idea? (add: citation)

Definition 2.3.2. (/ Theorem / Algorithm / Conventions) The
Jones polynomial is a link invariant valued in Laurent polynomials Z[q, q−1]
that is uniquely determined by the following recursion:

• base case: J(#) = 1
• skein relation: q−2J(L+)− q2J(L−) = (q−1 − q)J(L0) where
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Remark 2.3.3. The diagrams for L+, L−, and L0 above show a positive
crossing, a negative crossing, and an oriented resolution, respectively. The
singularity at the crossing can be resolved in two ways; L0 is the only
resolution that maintains the orientation of all the strands.

Remark 2.3.4. In class, we essentially used Jones’ conventions; these pro-
duce a Laurent polynomial in the variable

√
t:

• base case: V (#) = 1
• skein relation: t−1V (L+)− tV (L−) = (t1/2 − t−1/2)V (L0).

If you look at a database of Jones polynomials, you’ll likely find this con-
vention used.

For the purposes of this course, we will stick with Khovanov’s original
conventions for the first few weeks of class.

Example 2.3.5. Here we use the skein relation to compute the Jones
polynomial (with the conventions set in Definition 2.3.2) of the unlink of
two components, ##.

q−2 · 1− q2 · 1 = (q−1 − q)J(##)

J(##) =
q2 − q−2

q − q−1
= q + q−1.

Exercise 2.3.6. Compute the Jones polynomials of the following links:

(1) (positively linked) Hopf link
(2) right-handed trefoil

Exercise 2.3.7. (Important)

(1) Prove that for any link L, J(L) = J(Lr).
(2) Let K1 and K2 be knots, and let K1#K2 denote their connected

sum3:

Prove that J(K1#K2) = J(K1)J(K2). What is J(K1 ⊔K2)?

Exercise 2.3.8. (a) Show why the Jones polynomial is invariant un-
der an R1 move.

(b) Prove that for any link L, J(#L) = (q + q−1)J(L).

Question 2.3.9. (Open) Does the Jones polynomial detect the unknot U?
In other words, if J(D) = 1, is D necessarily a diagram for the unknot?

3I have not provided a precise definition here. This is a good time to Google the term

yourself to see some examples of the connected sum operation.
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2.4. Jones polynomial from Kauffman bracket. In this section, we
generally follow [BN02], certainly with the same conventions. However, I
may word things differently or rotate some pictures, for our future benefit.

Definition 2.4.1. The Kauffman bracket ⟨·⟩ is defined by the recursion

• ⟨∅⟩ = 1
• ⟨#L⟩ = (q + q−1)⟨L⟩
• ⟨ ⟩ = ⟨ ⟩ − q⟨ ⟩

Note that these local pictures are unoriented, unlike those in the skein
relation for the Jones polynomial.

Remark 2.4.2. Each crossing has two possible smoothings, which we will
name the 0-resolution and the 1-resolution, as shown:

0←− 1−→ .

• The 0-resolution is the one that you would naturally draw if you
started at an over-strand and drew a smile. It gets no coefficient in
the Kauffman bracket.

• The 1-resolution is the one that you would draw if you started at
the over-strand and drew a frown. It gets a coefficient of −q in the
Kauffman bracket.

Note that I draw my smileys like this: • •

The Kauffman bracket is not a link invariant. To see this, compare ⟨#⟩
and ⟨ ⟩. It is, however, a framed invariant. May talk more about this
later.

To fix this, we have to take into account the writhe of a diagram, which

measures how ‘twisty’ the choice of diagram is.

Definition 2.4.3. Let D be an oriented link diagram.

• Let n be the number of crossings in D.
• Let n+ be the number of positive crossings, and let n− be the
number of negative crossings.

The writhe of D is wr(D) = n+ − n−.

Definition 2.4.4. The (unnormalized) Jones polynomial is defined by

Ĵ(L) = (−1)n−qn+−2n−⟨L⟩

Note that we are treating L as both the link diagram and the link it repre-
sents. Equivalently, Ĵ(L) = (−q)−n− · qwr(L)⟨L⟩.

Remark 2.4.5. Alternatively, we can build the overall shifts into the
bracket, using the following recursion:

• ⟨∅⟩o = 1
• ⟨#L⟩o = (q + q−1)⟨L⟩o Recall that the two orientations on the
unknot are isotopic.

• (positive crossing) ⟨ ⟩o = q⟨ ⟩o − q2⟨ ⟩o
• (negative crossing) ⟨ ⟩o = q−2⟨ ⟩o − q−1⟨ ⟩o

The notation ‘⟨·⟩o’ is not standard, and is used here only to distinguish it
from the bracket used in [BN02].

Exercise 2.4.6. (1) How does the writhe of a diagram change under
the Reidemeister moves?

(2) How does the Kauffman bracket ⟨·⟩ of a diagram change under the
Reidmeister moves?

(3) Verify that the bracket ⟨·⟩o in Remark 2.4.5 computes Ĵ , i.e. Ĵ(L) =
⟨L⟩o.

Example 2.4.7. Let H denote (oriented) Hopf link shown below, where
n = 2, n+ = 2, and n− = 0.

First, we compute the Kauffman bracket of the shown diagram:
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= (q + q−1)2 − 2q(q + q−1) + q2(q + q−1)2

= q4 + q2 + 1 + q−2.

Therefore

Ĵ(H) = (−1)n−qn+−2n−⟨H⟩
= q2(q4 + q2 + 1 + q−2) = q6 + q4 + q2 + 1.

The normalized Jones polynomial, using these conventions, would be
Ĵ(H)
q+q−1 = q5 + q.

2.5. Jones polynomial via the Khovanov bracket. Khovanov homol-
ogy Kh(·) is a (Z ⊕ Z)-graded (co)homology theory whose graded Euler
characteristic recovers the Jones polynomial. The extra grading is usually
called the quantum grading or the internal grading.4

Definition 2.5.1. Let C = (
⊕

i,j∈Z C
i,j , d) be a bigraded chain complex

of Z-modules where, for each j,
⊕

i∈Z C
i,j is finite rank.

The graded Euler characteristic of C is

χq(C) =
∑
i,j∈Z

(−1)iqj rankHi,j(C).

Recall that the Euler characteristic of a CW complex can be computed
using any CW decomposition; in particular, you do not need to compute the
differentials in the CW chain complex to determine the Euler characteristic.

Similarly, we do not need to know the differential d to compute χq(C).
So, for now, we will define Bar-Natan’s Khovanov bracket, which lift the
recursion in Definition 2.4.1 to the level of bigraded chain complexes:

Definition 2.5.2. The Khovanov bracket is defined by the axioms

• J∅K = (0→ Z→ 0)
• J#LK = V ⊗JLK where V = Zv+⊕Zv− of graded dimension q+q−1.

We will discuss the actual definition later.

• J K = Tot
(
0→ J K d−→ J K{1} → 0

)
, where {1} means ‘q-grading

shift of 1’ (see Notation 2.5.5).

The terms of each chain complex at homological grading 0 are underlined.
The totalization functor flattens a multi-dimensional complex into a one-
dimensional chain complex. Since we are not considering the differential
right now, we will not carefully define this here. If the tensor product of
chain complexes looks unfamiliar to you, this is something you should look
up.

4Sometimes I may say ‘degree’ instead of grading. I will likely pontificate on the

terms grading and degree later in the course.
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Remark 2.5.3. (add: Maybe add a remark about Grothendieck groups.)

Theorem 2.5.4 (Khovanov, as interpreted by Bar-Natan). Given a link di-
agram L with n± crossings of sign ± respectively, the associated Khovanov
chain complex is given by

CKh(L) = JLK[n−]{n+ − 2n−}.
The square brackets indicate a shift in the homological grading (see Nota-
tion 2.5.5). Then

Ĵ(L) = χq(CKh(L)) = χq(Kh(L)).

Notation 2.5.5. We set our conventions for the grading shift functors [n]
and {m} to agree with those appearing in [BN02]. Let A =

⊕
A•,• be a

bigraded Z-module. Then A[n]{m} is the bigraded Z-module where

(A[n]{m})i,j = Ai−n,j−m.

Visually, if A is plotted on the the Z ⊕ Z bigrading lattice, A[n]{m} is
obtained by grabbing A and moving it by the vector ne1 +me2.

Example 2.5.6. We now reorganize the computation in Example 2.4.7,
as a primer for our formal introduction to Khovanov homology in the next
section.

Let H denote both the following diagram as well as the underlying ori-
ented Hopf link:

To compute JHK, we draw the cube of complete resolutions:

We associate V ⊗c to each complete resolution containing c closed compo-
nents. Each complete resolution corresponds to a binary string u ∈ {0, 1}2,
and we perform a quantum grading shift of |u| on associated Z-module,
where |u| is the number of 1’s appearing in the bitstring u.

This yields the Khovanov bracket

JHK = (V ⊗ V → V ⊕ V {1} → V ⊗ V {2}) .
(Recall that the underline indicates the chain group at homological grading
0.)

The Khovanov chain complex (without specifying differentials) is there-
fore

CKh(H) = (V ⊗ V → V ⊕ V {1} → V ⊗ V {2}) [n−]{n+ − 2n−}
= (V ⊗ V → V ⊕ V {1} → V ⊗ V {2}) [0]{2}
= (V ⊗ V {2} → V ⊕ V {3} → V ⊗ V {4}) .
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Schematically, can visualize the bigraded chain groups as follows, where
each • represents a copy of Z:

χ:
grq = 6 • 0− 0 + 1 = 1
grq = 4 • •• •• 1− 2 + 2 = 1
grq = 2 •• •• • 2− 2 + 1 = 1
grq = 0 • 1− 0 + 0 = 1

grh = 0 grh = 1 grh = 2

Here grh and grq denote the homological and quantum grading, respectively.

We conclude that, indeed, χq(CKh(H)) = q6 + q4 + q2 + 1 = Ĵ(H).

Example 2.5.7. For a very comprehensive computation of the Jones poly-
nomial of the trefoil using the Kauffman bracket, see Equation (1) of [BN02].

3. Khovanov homology

3.1. The Khovanov chain complex CKh(D). Given an oriented link
diagram D representing a link L, the Khovanov chain complex CKh(D) is
a (Z ⊕ Z)-graded chain complex of abelian groups. We define this chain
complex throughout this section. Throughout, we will use the term bigraded
in place of ‘(Z⊕ Z)-graded’.

3.1.1. Cube of resolutions. The cube of resolutions will set up the topolog-
ical story that the chain complex tells. Afterwards, we will replace each
part of the cube of resolution with algebraic objects, to fully define the
Khovanov chain complex.

Let n be the number of crossings in the diagram D, and pick an ordering
for the crossings. Let ci denote the ith crossing.

The n-dimensional binary cube {0, 1}n is the poset of binary strings
(a.k.a. bitstrings) of length n, with partial order given by 0 ≺ 1 and
lexicographic order.

Notation 3.1.1. Recall some terms and notations used when discussing
partially ordered sets:

• If u ≺ v, then we say u precedes v (and v succeeds u).
• If u ≺ v and they differ at exactly one bit, then we say u is an

immediate predecessor of v (and v is an immediate successor of u).
In this case, we write u ≺1 v.

We may think of a poset as a directed graph, with and edge u→ v if u ≺1 v.

Notation 3.1.2. For convenience, if u ≺1 v and they differ at the ith bit,
then we use the following length-n string in {0, 1, ∗}n to denote the edge
u→ v:

u1u2 · · ·ui−1 ∗ ui+1 · · ·un = v1v2 · · · vi−1 ∗ vi+1 · · · vn

For u ∈ {0, 1}n, let Du denote the complete resolution of the diagram D
where crossing ci is smoothed according to the bit ui:

0←− 1−→

If u ≺1 v, thenDu andDv differ only in the neighborhood of one crossing,
called the active crossing of the edge u ≺1 v. All other crossings are
passive.

Also, u ≺1 v represents either

• a merge of two circles (i.e. closed components) of Du into one circle
in Dv or

• a split of one circle of Du into two in Dv.

Any of these circles are called active circles of the edge u ≺1 v. All other
circles are passive; they look the same in both Du and Dv.
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Finally, when assigning gradings, we will need the Hamming weight of
bitstrings:

|u| =
∑
i

ui.

3.1.2. Chain groups, distinguished generators, gradings. We now describe
the distinguished generators of the Khovanov chain complex.

Our chain groups will be bigraded by gr = (grh, grq):

• The first grading is called the homological grading, denoted grh.
Its shift functor is denoted by [·].

• The second grading is called the quantum (or internal) grading,
denoted grq. Its shift functor is denoted by {·}.

Let V denote the bigraded Z-module Zv+ ⊕ Zv− with generators v± in
bigradings (0,±1).

Let |Du| denote the number of circles in the resolution Du. The chain
group lying above vertex u of the cube is V ⊗|Du|[|u|]{|u|} generated by the
2n length-n pure tensors

{v± ⊗ · · · ⊗ v±}.
These are called the distinguished (i.e. chosen) generators of the chain group
at this vertex.

Remark 3.1.3. The bigrading gr for a distinguished generator in V ⊗k is
determined by the bigrading on V :

gr(a⊗ v±) = gr(a) + gr(v±).

For example, gr(v+ ⊗ v− ⊗ v−) = (0,−1).

Remark 3.1.4. Note that when we actually write down a chain complex,
we implicitly homologically shift the chain groups. For example, the fol-
lowing chain complex is acyclic5:

V
1−→ V.

If we view the chain complex as a graded module C, and the differential as
an endomorphism d, then

• C = V ⊕ V [1] and

• d =

[
0 0
1 0

]
This mapping cone point of view will become useful later in the course.
Now is a good time to review/read about mapping cones in homological
algebra.

3.1.3. Differentials. To each edge of the cube u → v, we assign a map
according to whether the edge represents a merging of two circles or the
splitting of one circle. We casually call these the ‘edge maps’.

• If u→ v represents a merge, the map on tensor components corre-
sponding to active circles is given by:

m : V ⊗ V → V

v+ ⊗ v+ 7→ v+

v+ ⊗ v−, v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0

• If u→ v represents a split, the map on active components is given
by:

∆ : V → V ⊗ V
v+ 7→ v+ ⊗ v− + v− ⊗ v+
v− 7→ v− ⊗ v−

The map is identity on the passive components of the tensor product.

5i.e. homology vanishes
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Example 3.1.5. Here is a diagram for the right-handed trefoil, with a
choice of ordering on the three crossings (in blue):

In the cube of resolutions, the edge corresponding to 101→ 111 is a merging
of two circles into one, with the active crossing circled in dotted cyan:

We have chosen an ordering on the set of circles (in red) at each resolution
so that we can identify the copies of V in the tensor product at each vertex.
For example, the distinguished generator v− ⊗ v+ at resolution Du labels
the smaller circle v− and the larger v+.

The linear map duv is given by the bundle of arrows shown below, where
we use shorthand notation for compactness (e.g. v+++ := v+ ⊗ v+ ⊗ v+):

v++

v+− v−+

v−−

v+++

v++− v+−+ v−++

v+−− v−+− v−−+

v−−−

Observe that duv is identity on the passive circle labeled ‘1’ in both Du and
Dv.

Exercise 3.1.6. (Important)

(a) Verify that the merge and split maps, as written, decrease the quan-
tum grading by 1.

So, as part of the differential, we modify the merge and split
maps to be grq-preserving maps

duv : V ⊗ V → V {1} or duv : V → V ⊗ V {1},
depending on whether the edge u→ v corresponds to a merge or a
split, respectively.

(b) Verify that along each 2D face of the binary cube, the edge maps
commute.

Therefore, in order to get a chain complex (where d2 = 0), we
will need to add some signs so that the faces instead anticommute.

(c) For an edge u→ v in the cube with active crossing ci, associate the
following sign:

suv = (−1)
∑i−1

j=1 ui .

In other words, suv measures the parity of the number of 1’s ap-
pearing before the ∗ in the label given to the edge in the binary
cube (see Notation 3.1.2).

Verify that, for any face of the binary cube, and odd number of
the four edges bounding that face will have sign assignment −1.

This is not the only possible sign assignment. (add: Discussion
about cochains on cube.)
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3.1.4. Global grading shifts and homology. To compute Khovanov homology
of an oriented link L using diagram D:

(1) Draw the cube of resolutions.
(2) Associate modules V ⊗|Du| to each vertex u of the cube.
(3) Associate linear maps suvduv to each edge u→ v.
(4) Flatten the complex, by taking direct sums along Hamming weights;

the resulting complex is the Khovanov bracket, JDK.
(5) Add in the global bigrading shift {−n−}[n+−2n−] to get the Kho-

vanov chain complex :

CKh(D) = JDK{−n−}[n+ − 2n−].

(6) Take homology to get Khovanov homology :

Kh(L) = H∗(CKh(D)).

The Khovanov chain complex CKh(D) is bigraded, and its differential
dKh is a bidegree (1, 0) endomorphism. Therefore CKh(D) is really the
direct sum of many chain complexes, one for each quantum grading:

CKh(D) =
⊕
j∈Z

CKh•,j(D).

The homology is bigraded by the homological and quantum gradings (in-
dexed below by i and j, respectively):

Kh(L) =
⊕
i,j∈Z

Khi,j(L).

Example 3.1.7. We now finally compute the Khovanov homology of the
Hopf link H from Examples 2.4.7 and 2.5.6.

In order to uniquely identify the generators at the different resolutions in
the cube, we label the resolutions u, v, w, x and use these letters to denote
the distinguished generators at each resolution:

• The vertices of the binary cube are labeled in purple.
• The ordering of the tensor factors (i.e. circles) at each resolution is
shown in pink. Below each arrow, the pink text indicates the active
circles in the source and target of that edge.

• The only edge with sign assignment −1 is the split map shown in
bold red.

In shorthand, the Khovanov chain complex CKh(H) (i.e. with global shifts
incorporated) is the following chain complex (direct sums are taken verti-
cally):
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The bigradings of the distinguished generators of CKh(H) are shown in
pink.

The reader may now verify that the Khovanov homology of the positively-
linked Hopf link H is the bigraded Z-module

grq = 6 Z

grq = 4 Z

grq = 2 Z

grq = 0 Z

grh = 0 grh = 1 grh = 2

generated by the homology classes

grq = 6 [x++]

grq = 4 [x+−] = [x−+]

grq = 2 [u+− − u−+]

grq = 0 [u−−]

grh = 0 grh = 1 grh = 2

Exercise 3.1.8. The diagrams D and D′ below both represent the unknot,
U .

(a) Compute the Khovanov chain complex CKh for both, and then
compute homology to verify that they indeed agree.

(b) Can you prove that Khovanov homology is invariant under the fol-
lowing Reidemeister 1 move?

Bar-Natan’s introductory paper does cover this, but try first to
use intuition from your solution to part (a) to find the appropriate
chain homotopy equivalence.

3.2. An underlying TQFT. The algorithm/definition in the previous
section is concrete, but you might be wondering where these m and ∆ maps
come from. The answer lies in the fact that morphisms in the category of
bigraded Z-modules are images of cobordisms under a functor from a more
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topologically defined category. In this section, we describe an6 underlying
TQFT that determines the maps m and ∆ from the previous section.

3.2.1. TQFTs. QFTs (quantum field theories) and TQFTs (topological
quantum field theories), have a rich history in mathematical physics. The
purposes of this course, we will use the following simplified (i.e. vague)
definition, adapted from [Ati88]:

Definition 3.2.1. (Vague7) Let R be a commutative ground ring. An
(n + 1)-dimensional TQFT is a functor Z from a category of closed n-
dimensional manifolds and (n+ 1)-dimensional cobordisms8 between them
to a category of finitely generated (see Remark 3.2.3) R-modules, such that

• Z is multiplicative: Z(Y ⊔ Y ′) = Z(Y )⊗ Z(Y ′).
• Z is involutory : If Ȳ is Y with the opposite orientation, then
Z(Ȳ ) = Z(Y )∗ (the dual module).

We also naturally would like Z to send the identity cobordism Y×I : Y → Y
to the identity map.

Functoriality implies that if C01 : Y0 → Y1 and C12 : Y1 → Y2 are
cobordisms, then

Z(C12 ◦ C01) = Z(C12) ◦ Z(C01) : Z(Y0)→ Z(Y2).

Make sure you know what category and functor mean. Things will get
confusing from here on out if these terms aren’t clear.

Remark 3.2.2. To learn more about physical origins of the term topological
quantum field theory, take a look at the ncatlab page.

Atiyah’s Topology quantum field theories [Ati88] provides a set of precise
axioms for (n+ 1)-TQFTs and surveys some prominent examples.

Remark 3.2.3. Since any (orientable) manifold only has two orientations,
the category of cobordisms is pivotal, i.e. A ∼= (A∗)∗ for any object A.

(1) Thus the target category of the functor needs to be pivotal as well;
this is why we require finitely generated R-modules.

(2) Since our categories are pivotal we can identify any cobordism C :
K → L with various ‘bent’ versions of C, shown in the schematics
below: (add: discussion of boundary orientation?)

6We will see variations later, but focus first on the one that’s easiest to work with.
7We are more interested in specific TQFTs, so will not emphasize the details here.
8up to some equivalence relation

https://ncatlab.org/nlab/show/topological+quantum+field+theory
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We thus get equivalences

Hom(K,L) ∼= Hom(K ⊗ L̄,∅) ∼= Hom(∅, K̄ ⊗ L).
(3) We can view the equivalence

Hom(Z(K)⊗ Z(L̄), Z(∅)) ∼= Hom(Z(K), Z(L))

as an instance of the Tensor-Hom Adjunction:

Hom(M ⊗N,P ) ∼= Hom(M,Hom(N,P ))

by setting M = Z(K), N = Z(L̄) = Z(L)∗, and P = Z(∅) = R.
(Note that Hom(N,P ) = Hom(Z(L)∗, R) = (Z(L)∗)∗ ∼= Z(L).)

3.2.2. Bar-Natan’s dotted cobordism category and TQFT. In this section,
we will focus on one particular TQFT, which we will denote FBN. This
material is adapted from [BN05].

First, we need to understand the source category.

Definition 3.2.4. A small category C is preadditive (a.k.a.ModZ-enriched)if
for X,Y ∈ Ob(C), HomC(X,Y ) is an abelian group (i.e. a Z-module) under
composition, and this composition is bilinear (under the action of Z).

Remark 3.2.5. A category is additive if additionally, we have finite co-
products. We will boost up to additive categories later in §3.4.

Definition 3.2.6. The preadditive category T L0 is defined as follows:

• Objects are closed 1-manifolds with finitely many components em-
bedded smoothly in the plane R2; we call these planar circles. No-
tice that we are not identifying isotopic embeddings, but we do
ignore parametrization.

• Morphisms are finite sums of dotted cobordisms, or smooth surfaces
embedded in R2 × I,

– with boundary only in R2 × ∂I,
– possibly decorated with a finite number of dots,
– up to boundary-preserving isotopy, and
– subject to the following relations:

(1) ‘

The last relation is often referred to (gruesomely) as the neck-
cutting relation.

The target category will be bigraded Z-modules, which we will denote as
ggModZ when we want to emphasize the bigrading, or just ModZ for short.
The most important module for us will be the one associated to a single
circle in the plane, which we previously called V . We will now rename this
module and view it as V ∼= A{1}, where

A = Z[X]/(X2)

with degq(X) = −2.

Definition 3.2.7. The functor FBN : T L0 → ggModZ assigns

• to each collection of k planar circles the module (A{1})⊗k (with
∅ ; Z)

• to each dotted cobordism a linear map determined by the following
assignments:
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Remark 3.2.8. Notice that Definition 3.2.7 is really a Definition-Theorem,
since one needs to check that it really is a functor. What does one need to
check to make sure that FBN really is a functor?

Let C1 and C2 be cobordisms ∅→ P , where P is a collection of planar
circles. Then there is a Z-valued pairing

⟨C1, C2⟩ = FBN(C1 ∪∂ C̄2) (= FBN(C̄1 ∪∂ C2))

because C1 ∪∂ C̄2 is a closed 2-manifold, and the relations in T L0 allow us
to evaluate closed surfaces.

In the following exercise, we will use this pairing to recover the linear
maps m and ∆ from the previous section.

Exercise 3.2.9. (Not eligible for HW submission; we will complete these
in lecture.)

(a) In Definition 3.2.7, why did we not need to specify how FBN assigns
higher-genus cobordisms?

(b) We can identify the distinguished Z-module generators 1 and X in
A{1} with a cup and a dotted cup, respectively. Why does this
make sense?

(c) What is the dual cobordism to the cup? ...the dotted cup?
(d) Using this basis for A{1} and the pure tensor basis for A{1}⊗2,

determine the matrix (i.e. chart) associated to the merge and split
cobordisms by using the pairing.

Aside 3.2.10. (Computing linear maps using pairings)
Here is the linear algebra analogue to the method we are using above to

compute the maps m and ∆.
LetM : Rn → Rn be a matrix with respect to the standard basis vectors

{ei}. We can view M as a pairing, by setting

⟨v, w⟩M = w⊤Mv ∈ R.

The entries of the matrix are determined by the pairing on basis vectors:

Mij = e⊤i Mej

(Recall i is the row and j is the column.) This is because Mij is the
coefficient of ei in the image vector Mej .

In our setting, we are actually taking one additional step, which is to
identify the column vectors v and w with the linear maps R → Rn that
they represent, as n × 1 matrices. (The ‘dual’ vector w⊤ is a row vector
that represents a linear map Rn → R.)

So a ‘closed surface’ in our setting corresponds to the composition of
maps

R v−→ Rn M−→ Rn w⊤

−−→ R,



NOTES ON KHOVANOV HOMOLOGY 17

and setting v and w to be basis vectors allows us to compute the entries of
M .

(Note that any linear map R→ R is necessarily of the form ·r for some
r ∈ R. We are implicitly using HomR(R,R) ∼= R.)

Observe that even though we defined the target of FBN to be ggModZ,
everything is happening at homological grading 0 at the moment; we don’t
yet have chain complexes! However, the quantum degree of morphisms can
be determined in the source category T L0, as you’ll discover in the next
exercise.

Using Morse theory, we can show that every cobordism C between finite
collections of planar circles P → P ′ can be isotoped so that the critical
points occur at distinct times t ∈ I. We can slice up the cobordism into
pieces

C = Cm ◦ Cm−1 ◦ · · · ◦ C2 ◦ C1

where each Ci is a disjoint union of some identity cylinders and one of the
following four elementary cobordisms:

• cup (ι)
• cap (ε)
• merge (m)
• split (∆)

Exercise 3.2.11. (Important) Prove that for any cobordism C : P → P ′,
the bidegree of the associated linear map is

gr(FBN(C)) = (0, χ(C)),

where χ(C) is the Euler characteristic of the surface C.

Remark 3.2.12. Bar-Natan’s more general cobordism category does not
include dots as decorations. The objects are the same as in T L0, but
morphisms are subject to different relations:

These relations are called the S (sphere), T (torus), and 4Tu (four tubes)
relations.

We will sometimes work with this category, but for now have chosen to
start with the dotted category because elementary calculations are easier
there.

Exercise 3.2.13. (a) Use the T and 4Tu relations to show that the
genus-2 orientable surface evaluates to 0:

(b) Use 4Tu to show the relation below:

Use this to explain why, morally speaking, ‘dot’ = ‘half of a handle’.
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3.2.3. (Aside) Frobenius algebras and (1+1)-TQFTs. We now discuss why
we switched from using the Z-module

V = Zv+ ⊕ Zv−
to the underlying Z-module of the Z-algebra

A = Z[X]/(X2).

See [Kho06] for a reference.

Definition 3.2.14. A Frobenius system is the data (R,A, ε,∆) consisting
of

• a commutative ground ring R;
• an R-algebra A; in particular:

– There is a unit or inclusion map ι : R→ A that sends 1 7→ 1.
– A has a multiplication map m : A⊗R A→ A.

• a comultiplication map ∆ : A→ A⊗R A that is both coassociative
and cocommutative; and

• an R-module counit map ε : A→ R such that

(ε⊗ id) ◦∆ = id.

The algebra A is a Frobenius algebra; it is simultaneously both an algebra
and a coalgebra, and the following relation holds:

(idA ⊗m) ◦ (∆⊗ idA) = ∆ ◦m = (m⊗ idA) ◦ (idA ⊗∆).

Remark 3.2.15. There are many equivalent definitions for the term ‘Frobe-
nius algebra’. The definition we used above is the most topological:

As you might have guessed, there is a strong relationship between Frobe-
nius algebras and TQFTs.

In our case, A = Z[X]/(X2) is a rank 2 Frobenius extension of the ground
ring Z. Rank 2 Frobenius systems yield (1 + 1)-dimensional TQFTs, via
the identifications below:

the (1 + 1)-TQFT sends this... ... to this in the Frobenius system

∅ R

S1 A

cup ι

merge m

split ∆

cap ε

By modifying the Frobenius algebra, we can get many more flavors
of Khovanov homology. For example, if we instead use R = Z, A =
Z[X]/(X2 − 1), we would build a version of Khovanov homology that is
not quantum-graded (because X2 = 1 is not a graded equation). This ver-
sion of Khovanov homology is called Lee homology, and will be discussed
later in this course when we talk about topological applications of Khovanov
homology.

Warning 3.2.16. Do not use the category T L0 from Definition 3.2.6 as
the source of the TQFT functor for Lee homology! The category T L0

was specifically tailored to the version of Khovanov homology over A =
Z[X]/(X2), where ‘two dots = 0’.
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3.3. Bar-Natan’s tangle categories. We now return back to dotted
cobordisms, but develop the theory for not just planar circles, but also
planar tangles.

Just as a link is an embedding of a finite number of circles in R3, a tangle
is a proper embedding of a finite number of circles and arcs in a 3-ball B3.
A planar tangle is a tangle embedded in a 2-disk D2.

Since we will be building complicated categories out of tangles, we want
to be very concrete with our definition of tangle categories, and will instead
use the following definition.

Definition 3.3.1. An (n, n)-tangle is a 1-manifold with 2n boundary com-
ponents (a.k.a. endpoints), properly embedded in the thickened square
[0, 1]× [0, 1]× (− 1

2 ,
1
2 ), with 2n endpoints located at

(2)

{(
i

n+ 1
, 0, 0

)}n

i=1

∪
{(

i

n+ 1
, 1, 0

)}n

i=1

.

An (n, n)-tangle diagram is a projection of an (n, n)-tangle to the unit
square [0, 1] × [0, 1] where all singular points are transverse intersections
(just as in link diagrams).

A planar (n, n)-tangle is an (n, n)-tangle embedded in the square [0, 1]×
[0, 1]×{0}. In other words, a planar tangle is a crossingless projection of a
(quite untangled) tangle.

Remark 3.3.2. A planar (n, n)-tangle with no closed components is a
crossingless matching. These are the Catalan(n) many generators of the
Temperley-Lieb algebra TLn(δ) over a field k, whose composition ⊗ is given
by stacking squares vertically:

Closed components evaluate to a nonzero element δ ∈ k:

We are not thinking about the monoidal structure of these diagrams just
yet. But perhaps you can see the analogue between this (0+1)-dimensional
cobordism category and the (1+1)-dimensional cobordism categories we’re
working with.
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Definition 3.3.3 (cf. Definition 3.2.6). The preadditive category T Ln is
defined as follows:

• Objects are planar (n, n)-tangles with finitely many components,
embedded smoothly in the square I2 with endpoints at the 2n
points specified in (2), denoted p.

• Morphisms are finite sums of dotted cobordisms properly embedded
in I2 × [0, 1],

– with vertical boundary (i.e. on ∂I2 × [0, 1]) consisting only of
2n vertical line segments p× [0, 1];

– possibly decorated with a finite number of dots;
– up to boundary-preserving isotopy;
– subject to the same local relations (1) as in Definition 3.2.6.

So far, we’ve only defined a TQFT that can ‘evaluate’ closed compo-
nents to a Z-module. Since tangles in T Ln will inevitably have non-closed
components, i.e. arcs, we will not be specifying a functor to ModZ just
yet. Instead, we will bring our algebraic tools to the topological categories
T Ln and do as much homological algebra as we can before passing through
any TQFT. Later on in the course, however, we may discuss how to define
a 2-functor from the 2-category of (n points, (n, n)-tangles, (n, n)-tangle
cobordisms) to an appropriately rich algebraic 2-category.

In particular, we can still treat T Ln as a (bi)graded category, where the
quantum degree of a dotted cobordism C is defined as

degq(C) := χ(C)− n = χ(C)− 1

2
(# vertical boundary components)

(and the homological degree is degh(C) = 0).

3.4. Adding crossings : Boosting to chain complexes. The Kauffman
bracket showed us how to take a tangle with crossings and express it in
terms of planar tangles; the Khovanov bracket tells us that a tangle with
crossings is really just a chain complex of planar tangles. In this section,
we will boost our categories T Ln to categories of chain complexes, so that
we can capture tangles in general, not just planar tangles.

Throughout this section, we will be working in the more general setting
of tangles; recall that T L0 is just a special case of the categories T Ln. Also
recall that these are all preadditive categories, by construction.

Definition 3.4.1 ([BN05], Definition 3.2). Let C be a preadditive category.
The additive closure of C, denoted Mat(C), is the additive category defined
as follows:

• Objects are (formal) direct sums of objects of C. We can represent
these as column vectors whose entries are objects of C.

• Morphisms are matrices of morphisms in C, which are added, mul-
tiplied, and applied to the objects just as matrices are added, mul-
tiplied, and applied to vectors.

An additive category is preadditive, by definition (Remark 3.2.5). We
can build a category of chain complexes over any preadditive category:

Definition 3.4.2 ([BN05], Definition 3.3). Let C be a preadditive cate-
gory. The ⋆ category of chain complexes over C for ⋆ ∈ {b,−,+}, denoted
Kom⋆(C), is defined as follows:

• Objects are { finite length, bounded above, bounded below }9 chain
complexes of objects and morphisms in C.

• Morphisms are chain maps between complexes.

Remark 3.4.3. For an example of a category of chain complexes over
a preadditive but not additive category, take a look at Kom(MZ[G]) in
[ILM21, Remark 2.11].

Exercise 3.4.4. compute this composition of morphisms in Mat

9If the notation feels counterintuitive, just remember that ‘bounded above’ complexes

are ‘supported mostly in negative degrees’.
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We are now ready to define the Bar-Natan categories, which are the
categories we land in just before applying a TQFT to an algebraic category
like chain complex over Z-modules.

Definition 3.4.5. The Bar-Natan category BN ⋆
n is Kom⋆(Mat(T Ln)), for

⋆ ∈ {b,−,+}. In practice, I will mostly drop the ⋆ from the notation. The
bounded category is a full subcategory of both the − and + categories.
We will only be working with bounded complexes at the beginning of the
course, so the distinction won’t matter.

These categories are rich enough to capture the entirety of the informa-
tion in Khovanov homology, without ever passing to rings and modules. For
example, we can think of Khovanov homology as a functor from links and
cobordisms to the Bar-Natan category BN 0. We may then choose a TQFT
(or, equivalently, a Frobenius system) to apply to the resulting invariant,
to obtain many different flavors of Khovanov homology. Moreover, we now
have a “Khovanov homology for tangles.”

Remark 3.4.6. Since A = Mat(T Ln) is an abelian category, the homo-
topy category K⋆(A ) of chain complexes over A (for ⋆ ∈ {b,−,+}) is a
triangulated category. Khovanov homology can be thought of a functor to a
triangulated category Kb(Mat(T L0)), in which case the quasi-isomorphism
class of Kh(L) is the link invariant. The Kauffman bracket skein relation
gives exact triangles in this category. For exercises involving long exact
sequences in Khovanov homology, see [Tur16].

To demonstrate the use of these Bar-Natan categories, we will use these
categories to prove the invariance of Khovanov homology under some Rei-
demeister moves. You may find the proofs using the undotted (S, T , 4Tu)
theory in [BN05]. We will instead use the dotted theory as part of our
demonstration. But first, we need to introduce two important lemmas that
are immensely helpful with both by-hand and computer-assisted computa-
tions.

3.5. Computational tools. Bar-Natan’s categories are also incredibly use-
ful in computing Khovanov homology (by computer), because they allow
for a ‘divide-and-conquer’ approach using tangles. Implemented algorithms
typically scan a link diagram, simplifying the homological data at each step
of the filtration of the diagram. The main tools used for simplification are
delooping and abstract Gaussian elimination, which we discuss below. This
section follows [BN07].

Remark 3.5.1. These algorithms have been immensely important to solv-
ing problems in low-dimensional topology. For example, Lisa Piccirillo’s
proof that the Conway knot is not slice [Pic20] involves computing the s-
invariant (see §4.3) from the Khovanov homology of a knot with a lot (like
around 40; I haven’t counted carefully) of crossings, which is effectively
impossible by naive computation.

Let us first write down a concrete formula for the degree of a morphism
in T Ln.

Warmup 3.5.2. As a sanity check, let’s answer some warmup questions.
See Notation 2.5.5 for our conventions on shift functors.

(a) Let A be a graded R-module, with shift functor [·]. The set of

degree-preserving mapsA[i]→ A[j] correspond to elements of Homk(A,A)
for some k ∈ Z. What is k? Answer: k = i− j

(b) Suppose φ ∈ Hom0(A,A). What is the degree of the map induced
by φ from A[i]→ A[j]? Answer: j − i

(c) Now suppose ψ ∈ Homℓ(A,A). What is the degree of the map
induced by ψ from A[i]→ A[j]? Answer: j − i+ deg(ψ)

Lemma 3.5.3. Let F be a (possibly dotted) cobordism between planar
tangles T, T ′ ∈ T Ln. The degree of the morphism

F : T{i} → T ′{j}
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is

(3) degq(F ) = j − i+ χ(F )− n

(where n is 1
2 the number of tangle endpoints, or vertical boundary com-

ponents).

Verify that this makes sense to you!
From now on, we will treat diagrams and cobordism drawings as the

same things as the objects and morphisms they represent in BN .

Lemma 3.5.4 ([BN07], Lemma 4.1). (Delooping) # is chain homotopy
equivalent to ∅{1} ⊕∅{−1} via the chain homotopy equivalences

Proof. We leave it to the reader to check that F and G are indeed degree-
preserving (use Lemma 3.5.3). It suffices to check that G ◦ F ≃ id# and
F ◦G ≃ id∅{1}⊕∅{−1}. Indeed,

by the sphere, dotted sphere, and two dots relations, and

by the neck-cutting relation. (No nontrivial homotopies were needed; these
compositions are identity “on the nose”.) □

Delooping essentially allows us to replace any flat tangle containing a
closed component with two (quantum-shifted) copies of that flat tangle
with that circle removed.

Our next tool is an abstract version of Gaussian elimination. You can
ponder for yourself why this ‘is’ Gaussian elimination. Just remember that,
in Q, any nonzero number is a unit. Row operations are just changes of
basis on the target of the linear map. Similarly, column operations are just
changes of the basis on the source of the linear map.

Lemma 3.5.5 ([BN07], Lemma 4.2). (Gaussian elimination) Let C be a
pre-additive (add: check why BN said additive instead) category. Suppose
in Kom(Mat(C)) there is a chain complex segment

· · ·

α
β


−−−−→

A
B


e g

f h


−−−−−−→

C
D


(
γ δ

)
−−−−−−→ · · ·

where e is an isomorphism. Then the chain complex is homotopy equivalent
to

· · ·

(
β
)

−−−→
[
B
] (

h− fe−1g
)

−−−−−−−−−−→
[
D
] (

δ
)

−−−→ · · ·
Note that
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• A, B, C, D are objects in Mat(C)
• e, f, g, h, α, β, γ, δ are morphisms in Mat(C), i.e. these are matrices.

The main idea is that, by row and column operations, we are able to
choose a basis so that the first chain complex is the direct sum of the
second chain complex and an acyclic complex

0→ A
e−→ C → 0.

See Bar-Natan’s proof for full details.

Corollary 3.5.6. (Cancellation lemma)10 Suppose (C, d) is a chain com-
plex freely generated by a distinguished set of generators G, and we draw
it using dots and arrows. For x, y ∈ G, let d(x, y) denote the coefficient of
y in d(x).

Suppose there is an isomorphism arrow a
e−→ c between distinguished

basis elements a, c ∈ G, i.e. the coefficient of the arrow is a unit in the
ground ring R. Then (C, d) is chain homotopy equivalent to a ‘smaller’
chain complex (C ′, d′) where C ′ is generated by G − {a, c}, and for any
b ∈ G,

d′(b) = d(b)− d(b, c)d(a).

The new arrows (fe−1g in the figure above) are called zigzags for obvious
reasons.

Remark 3.5.7. Cancellation provides an especially fast way to compute
Khovanov homology over F2. Here is what my calculation for the Khovanov
homology of the Hopf link looks like:

10See [BP10, Lemma 4.1], which directs you to [Ras03, Lemma 5.1], which directs

you to [Flo89].



24 MELISSA ZHANG

3.6. Reidemeister invariance of Khovanov homology. Bar-Natan’s
Reidemeister invariance proofs use the more general S, T, 4Tu categories,
and gives explicit homotopies where needed.

Here, we will stay with the T Ln categories that we defined and prove
invariance under some (easy) Reidemeister moves, and make use of some
facts from homological algebra.

Definition 3.6.1. Let C, C′ be chain complexes. Let Cn denote the n-th
chain group of C, and let C ′

n be defined analogously.

• C′ is a subcomplex of C (written C′ ⊆ C) if each C ′
n is a submodule

of Cn and the differential on C′ is the restriction of the differential
on C.

• If C′ ⊆ C, then the quotient complex C/C′ has chain groups Cn/C
′
n,

and the differential is induced by the differential on C.

Lemma 3.6.2. Let

0→ C′ → C → C′′ → 0

be an exact sequence of chain complexes, i.e. C′′ ∼= C/C′.
(1) If C′ ≃ 0, then C ≃ C′′.
(2) If C′′ ≃ 0, then C ≃ C′.

We now show R1 invariance of any flavor of Khovanov homology that
factors through the dotted cobordism categories we defined.

Example 3.6.3. Consider the Reidemeister move involving a twist with a
negative crossing:
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There is only one strand in this local picture, so this crossing will be negative
regardless of how you orient the strand.

Using the Khovanov bracket, we resolve the crossing to obtain a two-
term chain complex in Kom(Mat(T L1)) representing the twist, and deloop
the resolution on the right:

After delooping, our homotopic (actually isomorphic) complex is:

Notice that the downward arrow is an isomorphism in Mat(T L1). The
quotient of the highlighted subcomplex is therefore nullhomotopic.

Using Lemma 3.6.2, we conclude that the complex representing the neg-
ative R1 twist is chain homotopy equivalent to the highlighted complex.

Remark 3.6.4. If you close up the (1, 1)-tangle in the example above, then
we can see exactly why the downward arrow is an isomorphism (red below),
and the upward arrow (green below) is not:

Notation 3.6.5. We have been using shorthand for merges and splits by
drawing the descending manifold of the index-1 critical point in the saddle,
on a diagram of the domain diagram:

It is sometimes also useful to have shorthand for other types of elementary
morphisms:
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Example 3.6.6. Here is a proof of invariance under the ‘braidlike’ R2
move, corresponding to the diagram

Below is the complex representing the (2, 2)-tangle above, with delooping
maps draw in orange. The purple maps are compositions of green and
orange maps.

After delooping, our complex looks like this:

Notice that the red arrows are isomorphisms. After performing Gaussian
elimination on these red arrows, we obtain the homotopy equivalent com-
plex highlighted in yellow.

R3 is always a more complicated move to deal with, because

• there are 3 crossings, so one needs to compare two cubes with eight
vertices each, and

• there are three strands, and therefore many possible orientations
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Nevertheless, Bar-Natan’s proof fits beautifully on just one page; see [BN05,
Figure 9] to learn what a ‘monkey saddle’ is.

Exercise 3.6.7. (1) Prove invariance under the other R1 move, where
the twist has a positive crossing.

(2) Prove invariance under the other R2 move, where the strands are
antiparallel.

3.7. (Projective) Functoriality. We are now equipped to fully define a
functor that allows us to study links and cobordisms by replacing them
with chain complexes and chain maps.

Once again, we begin by carefully defining our domain categories.

Definition 3.7.1. The category Link is defined as follows:

• Objects are smooth links in R311

• Morphisms are cobordisms between links, modulo isotopy rel bound-
ary.

At first glance, Link would be the category we would want to define our
functor out of. However, recall that we don’t actually compute Khovanov
homology directly from links; we actually use link diagrams. So, we need to
define an intermediate diagrammatic category that is equivalent to Link.

Definition 3.7.2. The category LinkDiag is defined as follows:

• Objects are smooth link diagrams drawn in R2 again, NOT up to
isotopy!

• Morphisms aremovies between link diagrams, modulomovie moves.

Movies and movie moves need to be discussed carefully, analogously to
how we defined link diagrams and Reidemeister moves.

Definition 3.7.3. A movie is a finite composition of the following ‘movie
clips’:

• planar isotopy
• Reidemeister moves
• Morse moves: birth of a circle, death of a circle, merging of two
circles, splitting of one circle into two

If F ⊂ R3× I is a cobordism from L0 ⊂ R3×{0} to L1 ⊂ R3×{1}, then
an associated movie M can be thought of as a collection of movie ‘frames’
{Mt | t ∈ [0, 1]} where Mt is a diagrammatic projection of the ‘slice’ of
the cobordism at time t, F ∩ (R3 × {t}). Indeed, the four Morse moves
correspond to cup, cap, merge, and split cobordisms, respectively.

Just as we required link diagrams to only have transverse intersections,
and for crossings to not be on top of each other, our definition for ‘movie’
ensures that our critical frames (i.e. frames where the projection R3×{t} →
R2 is not a link diagram) are isolated. Reidemeister moves and Morse moves
are basically ‘before and after’ pictures of the process of passing through a
critical frame.

In the category Link, morphisms are considered up to isotopy rel bound-
ary. Just as Reidemeister proved that any diagram isotopy can be described
as a finite composition of 3 local Reidemeister moves (and planar isotopy),
Carter and Saito showed that any isotopy rel boundary of a cobordism can
be captured as a finite composition of 15 local movie moves (and time-
preserving isotopy), which are now known as the Carter-Saito movie moves
[CS93].

Here is a figure ripped from [?]:

11or S3, if preferred, but see Remark 3.7.7
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Similar definitions can also be made for tangles:

Definition 3.7.4. The category Tangn is defined as follows:

• Objects are smooth (n, n)-tangles in [0, 1]2 with boundary at the
2n points p as in Definition 3.3.3.

• Morphisms are tangle cobordisms whose vertical boundary (i.e. the
boundary in ∂[0, 1]2× I) consists of the 2n line segments p× I, up
to isotopy rel boundary.

The Carter-Saito movie moves are local, and so the definition of the
diagrammatic category is essentially the same:

Definition 3.7.5. The category TangDiagn is defined as follows:

• Objects are smooth (n, n)-tangle diagrams drawn in [0, 1]2.
• Morphisms are movies between tangle diagrams that preserve the
boundary points p, modulo movie moves.

The punchline is that the diagrammatic categories are sufficient for cap-
turing all the information in the topological categories.

Theorem 3.7.6. There is an equivalence of categories between Link and
LinkDiag (and similarly between Tangn and TangDiagn).

We can attribute this theorem to the combined work of Reidemeister
and Carter–Saito but I should check this. The proof is beyond the scope of
this course, but we will make use of these equivalences all the time.

Remark 3.7.7. If you want to work with links in S3 instead, there are
more diagrammatic moves to check. In particular, we need to include the
sweep-around move, which equates the sweep-around movie (swinging a
strand of the diagram around the 2-sphere through the point at infinity)
with the identity movie. See [MWW22].

We now know what it means for a link invariant to be functorial : it is a
functor from the category Link to its target category.

For our purposes, we will define the Khovanov functor

FKh : LinkDiag→ ggModZ

to be the composition of the functors

LinkDiag→ Kom(Mat(T L0))→ ggModZ.
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The first functor is the unfortunately unnamed (projective) functor that
Bar-Natan gives us in [BN05]12 The second is the TQFT associated to the
Frobenius system (Z,A = Z[X]/(X2), ι,m,∆, ε) where the morphisms are
given by

ι : Z→ A
1 7→ 1

m : A⊗A → A
1⊗ 1 7→ 1

X ⊗ 1, 1⊗X 7→ X

X ⊗X 7→ 0

∆ : A → A⊗A
1 7→ X ⊗ 1 + 1⊗X
X 7→ X ⊗X

ε : A → Z
1 7→ 0

X 7→ 1.

Example 3.7.8. Khovanov homology over F2 is functorial; it defines a
functor

LinkDiag
FKh−−−→ ggVectF

which, when precomposed with the equivalence

Link
∼=−→ LinkDiag,

defines a functor from the category of links to the category of bigraded
vector spaces.

(add: Add MR citations) Jacobsson [?], Khovanov [?], and Bar-Natan
[BN05, Section 4.3] each showed that Khovanov homology over Z is projec-
tively functorial, meaning that it’s functorial up to a sign. In other words,
suppose you take two movies M and M ′ representing isotopic (rel bound-
ary) cobordisms C and C ′. Then the corresponding morphisms in ggModZ
satisfy

Kh(M ′) = ±Kh(M).

This sign discrepancy can be fixed, and it has been by a whole host of au-
thors [Cap08, CMW09, Bla10, San21, Vog20, ETW18, BHPW23]. However,
projective functoriality is enough for many, many important applications
of Khovanov homology, which we will see in the next section.

Exercise 3.7.9. (Highly recommended) The following is a version of Movie
Move 14 (‘MM14’):

12We can’t call it FBN because ‘Bar-Natan homology’ means something else, which

we will discuss later.
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Compute the induced map on Khovanov homology for each movie, by using
the Reidemeister 1 chain maps given in [BN05, Figure 5]. Show that the
resulting morphisms have opposite signs.

You do not need to pass through the TQFT, but you are welcome to;
the TQFT is a true (not projective) functor.

Beware: Bar-Natan’s cobordisms flow downward with time. You can tell
by looking at the domain and target objects of the cobordisms.

You can also quickly convince yourself that these movies, when read
backwards, actually do yield morphisms with the same sign.

Maybe add section on general planar algebras, operads

4. Applications of Khovanov homology

As a functorial invariant for links in the 3-sphere and cobordisms in the 4-
ball, Khovanov homology is a natural tool to study the relationship between
links in the context of the surfaces they bound. In this section, we survey
some of these applications. We start with some additional background on
surfaces properly embedded in B4. Once again, everything is smooth.

4.1. Surfaces in B4. We have already discussed cobordisms between links
in S3. In this section, we will use F to denote a cobordism (because they’re
2-dimensional, like ‘faces’). We reserve C for concordances, which are cobor-
disms that are diffeomorphic to cylinders. I.e. without the context of their
embedding, they are cylinders. We will use the more precise term annulus
instead of ‘cylinder’.

Definition 4.1.1. Let K0,K1 be knots in S3. A concordance C from K0

to K1 is an oriented cobordism such that C ∼= S1 × I.
Equivalently, C : K0 → K1 is a concordance if it is a (smooth, oriented)

connected cobordism with χ(C) = 0.
If such a C exists, then we sayK0 andK1 are concordant : K0 ∼ K1. This

is an equivalence relation, and the equivalence classes are called concordance
classes.

In fact, we can turn the set of knots into a group (!) by modding out by
concordance:

Definition 4.1.2. The smooth knot concordance group C is the group
where

• the elements are the concordance classes knots in S3;
• the binary operation is induced by # (connected sum);
• the identity element is the class of slice knots, or knots that are
concordant to the unknot;

• inverses are given by mirroring.
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Remark 4.1.3. If you take a knife to a B4 and cut off a slice, the cut you
make is a slice disk. I haven’t checked if this is the historical origin of the
text.

In general, a surface F properly embedded in B4 whose boundary is
∂F = K is called a slice surface for K.

Remark 4.1.4. We can equivalently say that a knot K ⊂ S3 is slice if it
bounds a disk D in B4: if we arrange D so that it is in Morse position with
respect to the radial function on B4, then the boundary of a neighborhood
of its lowest 0-handle is an unknot. In other words, an annulus is just a
punctured disk.

In this case, we say that D is a slice disk for K.

Again, this is actually a definition-theorem, and we will prove the theo-
rem after seeing a quick example.

Example 4.1.5. Consider the right-handed trefoil K:

If we claim that the left-handed trefoil m(K) represents the inverse con-
cordance class, then we must show that K#m(K) is concordant to the
unknot U .

It suffices to show that K#m(K) bounds a disk D embedded in B4. You
can see a projection of a slice disk in S3 in the following picture:

The disk is immersed in S3, and the only intersections are of the following
form, called ribbon intersections:

The interior of the horizontal sheet can be pushed deeper into B4, so
that the slice disk in B4 has no self-intersection.

To verify that the concordance group really is a group, we need to check
that

(1) # is well-defined on equivalence classes
(2) # is associative
(3) the equivalence class [U ] acts as the identity
(4) for any K, K#m(K) is slice.

You can convince yourself that the binary operation # on the set of knots is
both associative and commutative; if you want to think about this in more
detail, see [Ada04]. Once we show that # is well-defined, showing that [U ]
is the identity element is also easy.

It remains to show that # is well-defined, and that K#m(K) is slice.
Both proofs use standard topological arguments.

Claim 4.1.6. # is a well-defined binary operation on the set of concordance
classes.
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Proof. To see that # is a well-defined binary operation on concordance
classes, consider knots K,K ′, J ⊂ S3, where K ∼ K ′. Then there is some
concordance C : K → K ′, a cobordism in §3 × [0, 1]. Pick basepoints
p ∈ K, p′ ∈ K ′ and isotope K ′ so that p′ = p (as points in S3). Pick an
arc γ : [0, 1] ↪→ C such that γ(0) = p and γ(1) = p′.

Perform a boundary-preserving ambient isotopy to ‘straighten out’ γ;
that is, to arrange so that γ(t) ∈ S3 × {t}. (This is possible because the
codimension of γ in S3 × [0, 1] is 3, and codimension 3 submanifolds can
always be unknotted.) We will now assume that C is in such a position so
that γ is of the form p× [0, 1].

Now delete a small neighborhood of γ (i.e. ν(p)× [0, 1] ∩ C) in C. Pick
a point q ∈ J and delete it, forming a (1, 1) tangle J − ν(q) whose closure
is J . Shrink this tangle so that it fits within ν(p).

Finally, glue C−(ν(p)×[0, 1]) with (J−ν(q))×[0, 1] to form a concordance
from K#J to K ′#J .

□

Aside 4.1.7. How much should one write for such a proof? You might
notice that, for example, the last sentence of the preceding proof is not super
duper precise. However, the figure helps you understand the notation, and
also the underlying concept is quite simple. Also, we were careful to define
the category LinkDiag so that we can make diagrammatic arguments.

As a human who uses language, I don’t have a perfect answer for ‘how
much detail to show’ – this comes from getting to know the common vocab-
ulary, techniques, facts, and tricks used in the community you are writing
for.

We also give a (more terse) proof sketch that [m(K)] = [K]−1:

Claim 4.1.8. For any knot K ⊂ S3, K#m(K) is slice.

Proof. The identity cobordism K → K is a concordance. Pick a point
p ∈ K and delete p × [0, 1] from the identity cobordism. The resulting
surface can be properly embedded in B4 and viewed as a slice disk for
K#m(K).

□
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Remark 4.1.9. One can also define a notion of concordance between links.
However, the notion of a ‘link concordance group’ isn’t obvious, and is an
area of active research.

4.2. Obstruction to ribbon concordance. In Example 4.1.5, we en-
visioned a slice disk by seeing that its projection to S3 had only ribbon
singularities. The following definition gives a more general definition of
such phenomena.

Definition 4.2.1. Let F : L0 → L1 be a cobordism embedded in S3 × I
such that the second coordinate gives a Morse function. We say F is ribbon
if, with respect to the Morse handle decomposition, F contains only 0- and
1-handles.

A ribbon cobordism that D : ∅ → K that is a disk is called a ribbon
disk, and is a special case of a slice disk.

A knot K that bounds a ribbon disk is called a ribbon knot.

From the definition, the ‘ribbon concordant’ relation is not symmetric.
For example, the Stevedore knot 61 is slice: there is a clear ribbon concor-
dance C : U → 61. But if we reverse the Morse function, the upside-down
concordance C̄ clearly has a 2-handle.

Exercise 4.2.2. Draw a movie for the ribbon disk for 61 implied in the
diagram below:

Remark 4.2.3. Unfortunately, we naturally would want to say ‘61 is con-
cordant to the unknot’, which is true, but not if we add the word ‘ribbon’.
Mathematically it makes more sense to say U is ribbon concordant to 61,
and this is the language used in [LZ19]. Historically, some people defined
ribbon surfaces by taking the descending Morse function and requiring only
1- and 2-handles, so be careful. For my sanity, I will always specify the di-
rection of the cobordism as a morphism.

Remark 4.2.4. In terms of movies, a ribbon disk is a ‘happy movie’, where
the only critical moments are births of circles and merges of circles. There
are no scenes where circles split or die.

Conjecture 4.2.5. (Open: Slice-Ribbon Conjecture) All slice knots are
ribbon.

It is clear that ribbon disks are slice, so any ribbon knot is a slice knot.
However, not all slice disks are (isotopic to) ribbon disks (see Aru Ray’s
notes, Proposition 1.8). So, the conjecture posits that if K bounds a slice
disk, it bounds a (potentially non-isotopic) ribbon disk.

Remark 4.2.6. We will see soon that there are knots that bound non-
isotopic ribbon disks [HS21].

Levine–Zemke showed that we can use Khovanov homology to obstruct
the existence of ribbon cobordisms between two knots:

Theorem 4.2.7 ([LZ19]). If C : K0 → K1 is a ribbon concordance, then
the morphism

Kh(C) : Kh(K0)→ Kh(L1)

is injective, with left inverse Kh(C̄).

Here are some immediate corollaries that follow from basic algebra:

https://people.mpim-bonn.mpg.de/aruray/documents/slicenotes.pdf
https://people.mpim-bonn.mpg.de/aruray/documents/slicenotes.pdf
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Corollary 4.2.8 ([LZ19]). Suppose C : K0 → K1 is a ribbon concordance.

(1) At any bigrading, Khi,j(K0) ↪→ Khi,j(K1) as a direct summand.
(2) If additionally there is a ribbon concordance C ′ : K1 → K0, then

Kh(K0) ∼= Kh(K1).

Seriously, prove these for yourself. There are four more corollaries in the
paper, if you’re interested.

The proof uses a topological lemma first appearing in Zemke’s [Zem19].
This paper sparked a whole series of papers proving similar or related results
for other functorial link homology theories (add: all citations).

The proof of this lemma is embedded in the proof of Zemke’s main
theorem:

Lemma 4.2.9 ([Zem19]). Let C : K0 → K1 be a ribbon concordance, and
let C̄ be the upside-down (and opposite orientation) concordance to C, a
morphism K1 → K0.

If a movie presentation for C has n births and n saddles (note that the
Euler characteristic of a concordance is 0), then there is a movie presenta-
tion for C̄ ◦C with n births, n merge saddles, n split saddles that are dual
to the merge saddles, and n deaths.

In particular, the lemma tells us that C̄ ◦ C is isotopic to a cobordism
K0 → K0 that looks like the identity cobordism for K0 with n spheres
tubed on. Because of nontrivial knot theory for surfaces in dimension 4, this
cobordism might not be isotopic to the identity cobordism, but nevertheless,
Khovanov homology can’t tell because of the neckcutting relation:

Proof of Theorem 4.2.7. Take C and C̄ as in Lemma 4.2.9. In T L0, by
neckcutting, we see that the morphism C̄ ◦C is equal to the morphism with
2n summands that are all of the form idK0

disjoint union with n spheres, and
all summands have just one dot somewhere. After deleting the summands
containing an undotted sphere, the only remaining morphism is the one
consisting of idK0

and n dotted spheres, which evaluate to a coefficient of
1. Therefore C̄ ◦ C = idK0 as morphisms in T L0.

By (projective) functoriality of Kh, we have Kh(C̄)◦Kh(C) = Kh(C̄◦C),
and the remainder of the theorem follows. □
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4.3. The concordance homomorphism s. A Seifert surface for a knot
K ⊂ S3 is an oriented surface embedded in S3 whose boundary is K. The
3-ball genus or Seifert genus of a knot K, g3(K), is the minimal genus of a
Seifert surface for K:

g3(K) = min{g(F ) | F ↪→ S3 with ∂F = K}

Analogously, the 4-ball genus or slice genus of a knot K ∈ S3 is

g4(K) = min{g(F ) | F ↪→ B4 with ∂F = K},

the minimal genus of a slice surface for K.
concordance homomorphism
A major application of Rasmussen’s s invariant in 4D topology is Pic-

cirillo’s proof that the Conway knot is not slice; this was a long-standing
conjecture until she proved it in less than 8 pages. This is an Annals of
Mathematics paper. For those of you interested in 4-manifolds and using
Kirby calculus, this is a potential final project idea.

5. Some background in category theory and algebra
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