
Example 1.8. Let M2×2R denote the set of 2×2 matrices with real entries. This is a group under addition, but
is not a group under matrix multiplication, because some matrices are not invertible (e.g. the zero matrix).

Example 1.9. The general linear group of 2× 2 matrices is

GL2(R) = {A ∈ M2×2(R) | detA ̸= 0}.

By definition2, everything in GL2(R) has a multiplicative inverse. Matrix multiplication is indeed associa-
tive. We write either I or I2 for the identity matrix.

1.2 Groups as sets of symmetries

Historically, groups came up naturally from group actions. The action corresponding to the identity element
is “do nothing”.

To me, the most concrete way to understand and see a group action is to think about symmetries of 2D
regular polygons.

Question 1.10. What are the symmetries of a square? How many different symmetries are there?

If we think of a square as a rigid object, we can rotate it by angles that are multiples of π/2, and also
reflect across vertical, horizontal, and diagonal (angle ±π/4) lines.

Suppose we are building a video game where you need to be able to manipulated a square with only
two buttons. We might choose to assign our buttons to the following actions:

• ρ = rotate by π/2 CCW (counterclockwise)

• τ = reflect across the x-axis

We think about actions like we think about functions (hence the ◦ symbol).

Question 1.11. Can you write down a sequence of button presses to achieve all the symmetries of the
square?

There are obviously many different sequences of button presses that would achieve the same result.
One important but perhaps non-obvious way to do absolutely nothing is ρ ◦ τ ◦ ρ ◦ τ = (ρ ◦ τ)2. (Try it!)

Definition 1.12. The dihedral group Dn is the group of symmetries of a regular n-gon. 3

One way we will use to describe groups is called group presentation, which is written in the form

⟨generators | relations⟩.

The generators are the buttons you implement. The relations are a set of button presses that do nothing.
Once we understand normal subgroups, we will be able to formalize this definition rigorously. However, it’s
still useful to us right now, for intuition. For example, we can describe the set of symmetries of a square
now as

D4 = ⟨ρ, τ | ρ4 = τ2 = ρτρτ = 1⟩.

Remark 1.13. Notice that I’ve been eliding the composition symbol ◦ in favor of multiplicative notation. We
will talk more about conventions later, but for now you should just think back to how you used to write
2× 2 = 4, then you started writing a · b = c, and even later on you would just write AB = I .

Exercise 1.14. Write down a group presentation for the symmetries of a triangle: define what your gener-
ators do, and then write down some obvious relations. Then, think about how you would prove that your
presentation uniquely determines your symmetry group D3.

2review determinants if this isn’t clear!
3Warning: There are other conventions; some people write D2n instead.
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1.3 Cyclic groups Cn

Definition 1.15. A group G is cyclic if it is generated by a single element, i.e. there exists an element ρ ∈ G
such that every g ∈ G can be written in the form g = ρk for some k ∈ Z.

Example 1.16. The cyclic group C12 has the presentation

C12 = ⟨ρ | ρ12 = 1⟩.

Question 1.17. Is Z = (Z,+) a cyclic group?

Definition 1.18. The order of a group G is the number of elements that it contains, and is denoted |G|.

• If |G| is finite, then G is a finite group.

• If |G| is infinite, then G is an infinite group.

Question 1.19. What is the order of the group Cn = {ρ | ρn = 1⟩?

Exercise 1.20. Prove that every cyclic group is abelian.

Example 1.21. While we used multiplicative notation above to define C12, this group is basically the same
as the additive group we use when we look at analog clocks:
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The group Z/12Z is the additive group of integers mod 12. (We will talk more about this notation later.)
The group operation, addition, works exactly as you’d expect while looking at a 12-hour analog clock.

For example, 8 am + 6 hours = 2 pm, so 8 + 6 = 2.

This brings us to an important point about additive and multiplicative notation.

Remark 1.22. (Notation Conventions)
So far in this class we’ve used a couple different notations for the composition law / group operation in

a group G:

1. An abstract symbol, such as ◦.

• Permutations p, q ∈ Sn are set maps [n] → [n]. We can compose them in two ways: p ◦ q or q ◦ p.

• When n ≥ 3, Sn is nonabelian, so in general p ◦ q ̸= q ◦ p.

2. Additive notation, where + is a commutative group operation:

• e.g. (Z,+), (Z/nZ,+), (nZ,+)

• Use 0 to represent the additive identity.

3. Multiplicative notation, where b ◦ a = b · a is written ba:

• If x, y ∈ R× = (R− {0}, ·), we write xy as their product.

• If p, q ∈ Sn, we write pq or qp. In general, pq ̸= qp.

• Use 1 to represent the multiplicative identity.
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