1.8 Order of a group

We now introduce the order of a group, which is a description of its size. Finite and infinite groups behave
quite differently!

Definition 1.52. The order of a group G is the number of elements that the set (¢ contains, and is denoted
|Gl

e If |G| is finite, then G is a finite group. In this case, we write |G| = n.

e If |G| is infinite, we don’t usually make any further distinctions about the cardinality of G. We just
write |G| = oo, and say that G is an infinite group.

Exercise 1.53. What is the order of C,,? D,,? Z?

1.9 Order of an element

Given an element z in a group G, we can also define the order of the element, which is related to the notion
of the order of a group.

Definition 1.54. Let z € G. The cyclic subgroup generated by =z is
(z) :={g € G| g=2a" forsomek € Z}.
Exercise 1.55. Prove that (z) really is a subgroup of G.

Notice that we use the notation (-) to mean generated by. This is similar to the notation we use for
generators and relations in a group presentation. We will continue to use this notation. For example, if we
want to describe the subgroup generated by a subset X C G, we can write (X).

Definition 1.56. The order of an element = € G, denoted |z|, is the order of the cyclic subgroup (z) gener-
ated by z.

If |z| = n € N, then we say x has order n or is of order n. If |z| = oo, then z is an element of infinite order.
Example 1.57. The order of 1 € G (the element) is always 1 (the natural number).
Exercise 1.58. Convince yourself that if z € G, then |z| < |G|. When would |z| = |G|?

Exercise 1.59. In C* = (C — {0}, -), what are the elements of finite order? What is the order of the element
?

Exercise 1.60. (The Klein four group 42) Recall that GL2(R) is the group of invertible 2 x 2 matrices with
real coefficients. Inside GL»(R), there is a subgroup called the Klein four group V:

DG DE )

Use the concept of order of an element to prove that V' is not cyclic.
Solution: By inspection, every element has order either 1 or 2. If V' were cyclic, then it would be generated
by a single element g; since (g) = 4, the order of g would be 4.

Exercise 1.61. Leta,b € G. Prove that |ab| = |ba|. This is on HWO02.

Exercise 1.62. Show by example that the product of elements of finite order in a group need not have finite
order. What if the group is abelian? This is on HW02.
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1.10 Subgroups of Z
At this point you might already have some guesses for what the subgroups of Z are.
Theorem 1.63. Let S be a subgroup of (Z, +). Then S is either

e the trivial subgroup {0} or

* of the form nZ, where n is the smallest positive integer in the set S.

Proof. * Since 0 is the additive identity, 0 € S. If S # {0}, then there exist integers n, —n # 0in S. So S
contains a positive integer.

® Let a be the smallest positive integer in S. We want to show that aZ = S, so we need to show that
aZ < Sand S < aZ.

* To check that aZ < S, observe that (1) closure and induction imply ka € S, (2) 0 = 0a € S, and (3) S
contains inverses, so —ka € S.

* Toshow S C aZ, pick any n € S. Use division with remainder to write n = ga 4, where ¢,r € Z and
0<r<a.

- Since S'is a subgroup, r =n — ga € S.
- Since a is the smallest positive integer in .S, » must = 0.

— Therefore n = ga € aZ.

The argument in this proof is very useful, and we will see it again in this course.
Proposition 1.64. Let 2 € G, and let S denote the set of integers k such that k= 1:
S={keZ|z"=1}
(a) Sisasubgroup of Z
(b) If 2" = z° (say, r > s),thenz""®* =1,ie.r —s € S.

(c) Suppose that S is not the trivial subgroup {0} < Z. Then S = nZ for some positive integer n. The
powers {1,z,z?%, ..., 2"~ 1} are the distinct elements of the subgroup (z), and so the order of () is n.

Proof.  (a) Let’s use the subgroup criterion. Since 0 € S, S # 0. If k,£ € S, thenz*~¢ = 2 (z) "1 = 1.1 =1.
(You can also just check the three subgroup conditions.)

(b) This follows from the Cancellation Law (i.e. manipulating the algebraic equation).

(c) Suppose S # {0}. Then by Theorem 1.63, S = nZ, where n is the smallest positive integer in S.

Now let z* be an arbitrary power of z. We can write k = gn + 7 with 0 < r < n. Then 29" = 19 = 1,
so 2% = 29"g" = 2. Therefore every z* is equal to one of the elements 2" where 0 < r < n.

It remains to check that the powers {1, z, 2%,... 2"~} are all distinct. If 27 = 29 with0 < p < ¢ < n—1,
then by (b), ¢ — p is a positive multiple of n; this is impossible.
O

Part (c) therefore gives an equivalent definition of the order of an element in a group:
Corollary 1.65. If |g| # oo, then |g| = min{n € N | g™ = 1.

Exercise 1.66. Prove that every subgroup of a cyclic group is cyclic. Hint: Work with exponents and use the
description of the subgroups of Z'*. This is on HW03.
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