3 A bit of review + generalizations

3.1 Fields and Vector Spaces

Definition 3.1. A **field** is a set \mathbb{F} equipped with two associative and commutative binary operations + and \cdot such that

- $(\mathbb{F}, +)$ is an abelian group, with identity 0
- $(\mathbb{F}^{\times} = \mathbb{F} \{0\}, \cdot)$ is an abelian group, with identity 1
- a(b+c) = ab + ac (distributivity of \cdot over +).

In other words, a field is a set where you can add, subtract, multiply, and divide just as you do with the real numbers.

Example 3.2. Here are some examples of fields:

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
- $\mathbb{F}_p = (\mathbb{Z}/p\mathbb{Z}, +, \cdot)$ where *p* is prime (see next section)

Definition 3.3. A vector space over a field \mathbb{F} is a set *V* with the two operations

- addition: v + w for $v, w \in V$ and
- scalar multiplication: cv for $c \in \mathbb{F}$, $v \in V$

where

- (V, +) is an abelian group with identity the zero vector $\vec{0}$
- (ab)v = a(bv) for $a, b \in \mathbb{F}$ and $v \in V$ (associativity of scalar multiplication)
- 1*v* = *v*
- a(v+w) = av + aw and (a+b)v = av + bv for $a, b \in \mathbb{F}$, $v, w \in V$ (distributivity).

Exercise 3.4. Note that if $0 = 0_{\mathbb{F}}$, then for any $v \in V$, $0v = \vec{0}$ (use distributivity). We usually just write the symbol 0 for both zeroes, because of this relationship.

Example 3.5. Here are some examples of vector spaces over a field \mathbb{F} . These are all probably quite familiar if you let $\mathbb{F} = \mathbb{R}$.

- $V = \mathbb{F}$
- $V = \mathbb{F}^n = \mathbb{F} \times \mathbb{F} \times \dots \times \mathbb{F}$
- $V = M_{n \times n}(\mathbb{F})$, the set of all $n \times n$ matrices with entries in \mathbb{F}
- $V = \mathbb{F}[x]$, the set of polynomials in x with coefficients in \mathbb{F}

Definition 3.6. A subspace *W* of a vector space *V* over a field \mathbb{F} is a *nonempty* subset closed under the operations of addition and scalar multiplication.

A subspace *W* is **proper** if it is neither $\{0\} \subset V$ nor $V \subset V$.

Example 3.7. The set of all continuous functions $\mathbb{R} \to \mathbb{R}$, denoted $C^0(\mathbb{R})$, is a vector space over \mathbb{R} . Observe that $\mathbb{R}[x]$ is a vector **subspace** of $C^0(\mathbb{R})$.⁷

Definition 3.8. Let *V*, *W* be vector spaces over a field \mathbb{F} . A **linear map** (which is short for " \mathbb{F} -linear map") is a function $\phi : V \to W$ that preserves the structure of vector spaces:

⁷We write $C^r(\mathbb{R})$ for the set of all *r*-times differentiable functions from $\mathbb{R} \to \mathbb{R}$. Notice that $\mathbb{R}[x] \subset C^{\infty}(\mathbb{R}) \subset \cdots \subset C^r(\mathbb{R}) \subset C^{r-1}(\mathbb{R}) \subset \cdots \subset C^1(\mathbb{R}) \subset C^0(\mathbb{R})$.

- $\phi(\vec{0}_V) = \vec{0}_W$
- $\phi(v_1 + v_2) = \phi(v_1) + \phi(v_2)$ for $v_1, v_2 \in V$
- $\phi(cv) = c\phi(v)$ for $v \in V, c \in \mathbb{F}$

Remark 3.9. In general, the word **linear** indicates that a map behaves like a linear function f(x) = ax + b, in the sense that if we have two coefficients c_1, c_2 and two elements x_1, x_2 , then

$$f(c_1x_1 + c_2x_2) = c_1f(x_1) + c_2f(x_2).$$

This will come up in 150B when you talk about modules over rings, which are generalizations of vector spaces over fields.

Example 3.10. Let $A \in M_{n \times m}(\mathbb{R})$. (That is, *n* rows, *m* columns.) View *A* as a linear map $A : \mathbb{R}^m \to \mathbb{R}^n$. (Here, the **domain** of the function *A* is \mathbb{R}^m and the **codomain** of the function *A* is \mathbb{R}^n .)

• The **nullspace** of *A* is the set of all vectors in the domain that are sent to 0 by *A*:

$$\operatorname{null}(A) = \{ v \in \mathbb{R}^m \mid Av = 0 \in \mathbb{R}^n \}.$$

• The **range** of *A* is the set of all output vectors in the codomain of *A*:

$$\operatorname{range}(A) = \{ Av \in \mathbb{R}^n \mid v \in \mathbb{R}^m \}.$$

Check that $\operatorname{null}(A)$ is a subspace of \mathbb{R}^m , and $\operatorname{range}(A)$ is a subspace of \mathbb{R}^n .

Exercise 3.11. How many elements are there in the vector space \mathbb{F}_p^2 ? How many different *proper* subspaces of \mathbb{F}_p^2 are there? HW04

3.2 Equivalence classes and partitions

A **partition** P of a set S is a subdivision of S into nonoverlapping, nonempty subsets. Here is a precise definition.

Definition 3.12. Let *S* be a set. A **partition** $P = {P_i}_{i \in I}$ is a set of subsets of *S* such that the following conditions hold:

- For all $i, P_i \neq \emptyset$.
- If $i \neq j$, then $P_i \cap P_j = \emptyset$.
- $P = \bigcup_{i \in I} P_i$.

In other words, a partition $P = \{P_i\}_{i \in I}$ is a collection of nonempty subsets of S such that for all $s \in S$, $s \in P_i$ for *exactly one* $i \in I$.

In this case, *S* is the *disjoint union* of the subsets in *P*:

$$S = \coprod_{i \in I} P_i.$$

Exercise 3.13. What are all the partitions of the set [4]?

Recall that a **relation** R on a set S is a subset of $S \times S$. (This is more general than a *function*.) If $(a, b) \in R$, we usually write $a \sim b$; however, note that a priori, we don't know if this relationship is symmetric, since $(a, b) \neq (b, a)$ in $S \times S$.

We care more about equivalence relations, though:

Definition 3.14. An equivalence relation on a set S is a relation \sim that is

- reflexive: $a \sim a$
- symmetric: if $a \sim b$ then $b \sim a$
- **transitive**: if $a \sim b$ and $b \sim c$, then $a \sim c$

for all $a, b, c \in S$.

Definition 3.15. Let \sim be an equivalence relation on *S*. Let $a \in S$. The **equivalence class of** *a*, denoted [*a*] or \bar{a} , is the subset of *S* consisting of all elements that are related to *a* by \sim :

$$[a] = \{b \in S \mid a \sim b\}.$$

We say that *a* is a **representative** of its equivalence class.

Exercise 3.16. Let *a*, *b* be elements in a group *G*. We say *a* is **conjugate** to *b* if there exists $g \in G$ such that $b = gag^{-1}$. Prove that **conjugacy** is an equivalence relation. HW03

The following proposition states that *equivalence relations* and *partitions* are actually one and the same.

Proposition 3.17. An equivalence relation \sim on a set *S* determines a partition *P*, and vice versa.

Proof. HW03

Remark 3.18. Let *P* denote the partition given by the equivalence relation \sim on *S*. By the Axiom of Choice, no matter how large the cardinality of *P* is, we are able to choose a representative from each subset in *P*. That is, if $P = \{P_{\alpha}\}_{\alpha \in I}$ where *I* is an indexing set, it is possible to pick out a collection $\{s_{\alpha}\}_{\alpha \in I}$.

Remark 3.19. If *S* is empty, then the only partition is $P = \{\}$, i.e. *P* itself is the empty set. Then the conditions that make *P* a partition are vacuously true.

3.3 Modular arithmetic

We have talked a bit about $\mathbb{Z}/n\mathbb{Z}$ as well as the fields \mathbb{F}_p . Let's review their construction now using the ideas of equivalence classes / partitions, and discuss what it means for a function (i.e. set map) to be *well-defined*. Two integers $a, b \in \mathbb{Z}$ are **congruent mod** n if $a - b \in n\mathbb{Z}$. In this case, we write $a \equiv b \mod n$.

Exercise 3.20. Check that \equiv is an equivalence relation.

Let \bar{a} denote the equivalence class of a under the equivalence relation \equiv . Observe that by the division algorithm, the set of numbers $\{0, 1, ..., n - 1\}$ is a complete set of representatives (i.e. we have one representative from every equivalence class). So, the partition corresponding to \equiv is

$$P = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\},\$$

and we really think of \bar{k} as the subset

$$\bar{k} = k + n\mathbb{Z} \subset \mathbb{Z}.$$

Proposition 3.21. Addition and multiplication on $\mathbb{Z}/n\mathbb{Z}$, induced by $+, \cdot$ on \mathbb{Z} , are well-defined.

Proof. Check that if $a \equiv a'$ and $b \equiv b'$, then

1.
$$(a + b) \equiv (a' + b')$$
 and

2.
$$ab \equiv a'b'$$
.

The concept of "well-definedness" doesn't come from cold, hard mathematics, but rather our human tendency to make errors when trying to define a function (i.e. a set map).

Sometimes mathematicians ask whether a function is well defined. What they mean is this: "Does the rule you propose really assign to each element of the domain one and only one value in the codomain?"

- The Art of Proof, by Matthias Beck and Ross Geoghegan.

Example 3.22. If I try to define a function $f : \mathbb{N} \to \mathbb{R}$ by saying "f(n) is the real number that squares to n", then I have not succeeded in defining a function, because, for example, it's ambiguous what f(4) should be. You would then tell me, "f is not a well-defined function." By saying this you are not saying that f was ever actually a mathematical function at all; you are saying that this rule doesn't define a function.

Exercise 3.23. HW03 This exercise will show you an example of an assignment that is actually not well-defined, and is therefore not a function, as well as an example where a function is actually defined successfully.

(a) Prove that the following assignment is **not** a well-defined function between sets:

$$\varphi: \mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}/7\mathbb{Z}$$
$$\bar{k} \mapsto \bar{k}.$$

(Recall that \overline{k} denotes the equivalence class of k in $\mathbb{Z}/n\mathbb{Z}$.)

(b) Prove that the following assignment is a well-defined function between sets:

$$\varphi: \mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$$
$$\bar{k} \mapsto \bar{k}.$$

4 Maps between groups

4.1 Homomorphisms

Definition 4.1. Let (S, \Box) and (T, \blacktriangle) be groups. A homomorphism

$$\varphi: (S, \Box) \to (T, \blacktriangle)$$

is a (set) map $\varphi : S \to T$ such that for all $a, b \in S$,

$$\varphi(a \Box b) = \varphi(a) \blacktriangle \varphi(b).$$

Here's a more standard-looking definition of a group homomorphism:

Definition 4.2. Let G, G' be groups, written with multiplicative notation. A homomorphism

$$\varphi: G \to G'$$

is a map from *G* to *G*' such that for all $a, b \in G$,

$$\varphi(ab) = \varphi(a)\varphi(b).$$

This homomorphism condition is probably the most important equation in this class.

Example 4.3. Here are some familiar examples of homomorphisms.

- det : $GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$
- $\operatorname{sgn}: S_n \to \{\pm 1\}$
- $i: S_n \to S_m$ where $n \le m$
- $\exp: \mathbb{R}^+ \to \mathbb{R}^{\times}$, where $x \mapsto e^x$
- $\varphi: \mathbb{Z}^+ \to G$ where $\varphi(n) = a^n$ for a fixed element $a \in G$
- $|\cdot|: \mathbb{C}^{\times} \to \mathbb{R}^{\times}$