3 A bit of review + generalizations

3.1 Fields and Vector Spaces

Definition 3.1. A field is a set \mathbb{F} equipped with two associative and commutative binary operations + and - such that

- $(\mathbb{F},+)$ is an abelian group, with identity 0
- $\left(\mathbb{F}^{\times}=\mathbb{F}-\{0\}, \cdot\right)$ is an abelian group, with identity 1
- $a(b+c)=a b+a c$ (distributivity of • over +).

In other words, a field is a set where you can add, subtract, multiply, and divide just as you do with the real numbers.

Example 3.2. Here are some examples of fields:

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
- $\mathbb{F}_{p}=(\mathbb{Z} / p \mathbb{Z},+, \cdot)$ where p is prime (see next section)

Definition 3.3. A vector space over a field \mathbb{F} is a set V with the two operations

- addition: $v+w$ for $v, w \in V$ and
- scalar multiplication: $c v$ for $c \in \mathbb{F}, v \in V$
where
- $(V,+)$ is an abelian group with identity the zero vector $\overrightarrow{0}$
- $(a b) v=a(b v)$ for $a, b \in \mathbb{F}$ and $v \in V$ (associativity of scalar multiplication)
- $1 v=v$
- $a(v+w)=a v+a w$ and $(a+b) v=a v+b v$ for $a, b \in \mathbb{F}, v, w \in V$ (distributivity).

Exercise 3.4. Note that if $0=0_{\mathbb{F}}$, then for any $v \in V, 0 v=\overrightarrow{0}$ (use distributivity). We usually just write the symbol 0 for both zeroes, because of this relationship.

Example 3.5. Here are some examples of vector spaces over a field \mathbb{F}. These are all probably quite familiar if you $\operatorname{let} \mathbb{F}=\mathbb{R}$.

- $V=\mathbb{F}$
- $V=\mathbb{F}^{n}=\mathbb{F} \times \mathbb{F} \times \cdots \times \mathbb{F}$
- $V=M_{n \times n}(\mathbb{F})$, the set of all $n \times n$ matrices with entries in \mathbb{F}
- $V=\mathbb{F}[x]$, the set of polynomials in x with coefficients in \mathbb{F}

Definition 3.6. A subspace W of a vector space V over a field \mathbb{F} is a nonempty subset closed under the operations of addition and scalar multiplication.

A subspace W is proper if it is neither $\{0\} \subset V$ nor $V \subset V$.
Example 3.7. The set of all continuous functions $\mathbb{R} \rightarrow \mathbb{R}$, denoted $C^{0}(\mathbb{R})$, is a vector space over \mathbb{R}. Observe that $\mathbb{R}[x]$ is a vector subspace of $C^{0}(\mathbb{R}) .{ }^{7}$
Definition 3.8. Let V, W be vector spaces over a field \mathbb{F}. A linear map (which is short for " \mathbb{F}-linear map") is a function $\phi: V \rightarrow W$ that preserves the structure of vector spaces:

[^0]- $\phi\left(\overrightarrow{0}_{V}\right)=\overrightarrow{0}_{W}$
- $\phi\left(v_{1}+v_{2}\right)=\phi\left(v_{1}\right)+\phi\left(v_{2}\right)$ for $v_{1}, v_{2} \in V$
- $\phi(c v)=c \phi(v)$ for $v \in V, c \in \mathbb{F}$

Remark 3.9. In general, the word linear indicates that a map behaves like a linear function $f(x)=a x+b$, in the sense that if we have two coefficients c_{1}, c_{2} and two elements x_{1}, x_{2}, then

$$
f\left(c_{1} x_{1}+c_{2} x_{2}\right)=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right) .
$$

This will come up in 150B when you talk about modules over rings, which are generalizations of vector spaces over fields.

Example 3.10. Let $A \in M_{n \times m}(\mathbb{R})$. (That is, n rows, m columns.) View A as a linear map $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. (Here, the domain of the function A is \mathbb{R}^{m} and the codomain of the function A is \mathbb{R}^{n}.)

- The nullspace of A is the set of all vectors in the domain that are sent to 0 by A :

$$
\operatorname{null}(A)=\left\{v \in \mathbb{R}^{m} \mid A v=0 \in \mathbb{R}^{n}\right\} .
$$

- The range of A is the set of all output vectors in the codomain of A :

$$
\operatorname{range}(A)=\left\{A v \in \mathbb{R}^{n} \mid v \in \mathbb{R}^{m}\right\} .
$$

Check that $\operatorname{null}(A)$ is a subspace of \mathbb{R}^{m}, and range (A) is a subspace of \mathbb{R}^{n}.
Exercise 3.11. How many elements are there in the vector space \mathbb{F}_{p}^{2} ? How many different proper subspaces of \mathbb{F}_{p}^{2} are there? HW04

3.2 Equivalence classes and partitions

A partition P of a set S is a subdivision of S into nonoverlapping, nonempty subsets. Here is a precise definition.

Definition 3.12. Let S be a set. A partition $P=\left\{P_{i}\right\}_{i \in I}$ is a set of subsets of S such that the following conditions hold:

- For all $i, P_{i} \neq \emptyset$.
- If $i \neq j$, then $P_{i} \cap P_{j}=\emptyset$.
- $P=\bigcup_{i \in I} P_{i}$.

In other words, a partition $P=\left\{P_{i}\right\}_{i \in I}$ is a collection of nonempty subsets of S such that for all $s \in S$, $s \in P_{i}$ for exactly one $i \in I$.

In this case, S is the disjoint union of the subsets in P :

$$
S=\coprod_{i \in I} P_{i} .
$$

Exercise 3.13. What are all the partitions of the set [4]?
Recall that a relation R on a set S is a subset of $S \times S$. (This is more general than a function.) If $(a, b) \in R$, we usually write $a \sim b$; however, note that a priori, we don't know if this relationship is symmetric, since $(a, b) \neq(b, a)$ in $S \times S$.

We care more about equivalence relations, though:
Definition 3.14. An equivalence relation on a set S is a relation \sim that is

- reflexive: $a \sim a$
- symmetric: if $a \sim b$ then $b \sim a$
- transitive: if $a \sim b$ and $b \sim c$, then $a \sim c$
for all $a, b, c \in S$.
Definition 3.15. Let \sim be an equivalence relation on S. Let $a \in S$. The equivalence class of a, denoted $[a]$ or \bar{a}, is the subset of S consisting of all elements that are related to a by \sim :

$$
[a]=\{b \in S \mid a \sim b\}
$$

We say that a is a representative of its equivalence class.
Exercise 3.16. Let a, b be elements in a group G. We say a is conjugate to b if there exists $g \in G$ such that $b=g a g^{-1}$. Prove that conjugacy is an equivalence relation. HW03

The following proposition states that equivalence relations and partitions are actually one and the same.
Proposition 3.17. An equivalence relation \sim on a set S determines a partition P, and vice versa.

Proof. HW03

Remark 3.18. Let P denote the partition given by the equivalence relation \sim on S. By the Axiom of Choice, no matter how large the cardinality of P is, we are able to choose a representative from each subset in P. That is, if $P=\left\{P_{\alpha}\right\}_{\alpha \in I}$ where I is an indexing set, it is possible to pick out a collection $\left\{s_{\alpha}\right\}_{\alpha \in I}$.
Remark 3.19. If S is empty, then the only partition is $P=\{ \}$, i.e. P itself is the empty set. Then the conditions that make P a partition are vacuously true.

3.3 Modular arithmetic

We have talked a bit about $\mathbb{Z} / n \mathbb{Z}$ as well as the fields \mathbb{F}_{p}. Let's review their construction now using the ideas of equivalence classes / partitions, and discuss what it means for a function (i.e. set map) to be well-defined.

Two integers $a, b \in \mathbb{Z}$ are congruent $\bmod n$ if $a-b \in n \mathbb{Z}$. In this case, we write $a \equiv b \bmod n$.
Exercise 3.20. Check that \equiv is an equivalence relation.
Let \bar{a} denote the equivalence class of a under the equivalence relation \equiv. Observe that by the division algorithm, the set of numbers $\{0,1, \ldots, n-1\}$ is a complete set of representatives (i.e. we have one representative from every equivalence class). So, the partition corresponding to \equiv is

$$
P=\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}
$$

and we really think of \bar{k} as the subset

$$
\bar{k}=k+n \mathbb{Z} \subset \mathbb{Z}
$$

Proposition 3.21. Addition and multiplication on $\mathbb{Z} / n \mathbb{Z}$, induced by,$+ \cdot$ on \mathbb{Z}, are well-defined.
Proof. Check that if $a \equiv a^{\prime}$ and $b \equiv b^{\prime}$, then

1. $(a+b) \equiv\left(a^{\prime}+b^{\prime}\right)$ and
2. $a b \equiv a^{\prime} b^{\prime}$.

The concept of "well-definedness" doesn't come from cold, hard mathematics, but rather our human tendency to make errors when trying to define a function (i.e. a set map).

Sometimes mathematicians ask whether a function is well defined. What they mean is this: "Does the rule you propose really assign to each element of the domain one and only one value in the codomain?"

- The Art of Proof, by Matthias Beck and Ross Geoghegan.

Example 3.22. If I try to define a function $f: \mathbb{N} \rightarrow \mathbb{R}$ by saying " $f(n)$ is the real number that squares to n ", then I have not succeeded in defining a function, because, for example, it's ambiguous what $f(4)$ should be. You would then tell me, " f is not a well-defined function." By saying this you are not saying that f was ever actually a mathematical function at all; you are saying that this rule doesn't define a function.

Exercise 3.23. HW03 This exercise will show you an example of an assignment that is actually not welldefined, and is therefore not a function, as well as an example where a function is actually defined successfully.
(a) Prove that the following assignment is not a well-defined function between sets:

$$
\begin{aligned}
\varphi: \mathbb{Z} / 10 \mathbb{Z} & \rightarrow \mathbb{Z} / 7 \mathbb{Z} \\
\bar{k} & \mapsto \bar{k} .
\end{aligned}
$$

(Recall that \bar{k} denotes the equivalence class of k in $\mathbb{Z} / n \mathbb{Z}$.)
(b) Prove that the following assignment is a well-defined function between sets:

$$
\begin{aligned}
\varphi: \mathbb{Z} / 10 \mathbb{Z} & \rightarrow \mathbb{Z} / 5 \mathbb{Z} \\
\bar{k} & \mapsto \bar{k}
\end{aligned}
$$

4 Maps between groups

4.1 Homomorphisms

Definition 4.1. Let (S, \square) and (T, Δ) be groups. A homomorphism

$$
\varphi:(S, \square) \rightarrow(T, \mathbf{\Delta})
$$

is a (set) map $\varphi: S \rightarrow T$ such that for all $a, b \in S$,

$$
\varphi(a \square b)=\varphi(a) \Delta \varphi(b)
$$

Here's a more standard-looking definition of a group homomorphism:
Definition 4.2. Let G, G^{\prime} be groups, written with multiplicative notation. A homomorphism

$$
\varphi: G \rightarrow G^{\prime}
$$

is a map from G to G^{\prime} such that for all $a, b \in G$,

$$
\varphi(a b)=\varphi(a) \varphi(b)
$$

This homomorphism condition is probably the most important equation in this class.
Example 4.3. Here are some familiar examples of homomorphisms.

- $\operatorname{det}: G L_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{\times}$
- $\operatorname{sgn}: S_{n} \rightarrow\{ \pm 1\}$
- $i: S_{n} \rightarrow S_{m}$ where $n \leq m$
- $\exp : \mathbb{R}^{+} \rightarrow \mathbb{R}^{\times}$, where $x \mapsto e^{x}$
- $\varphi: \mathbb{Z}^{+} \rightarrow G$ where $\varphi(n)=a^{n}$ for a fixed element $a \in G$
- $|\cdot|: \mathbb{C}^{\times} \rightarrow \mathbb{R}^{\times}$

[^0]: ${ }^{7}$ We write $C^{r}(\mathbb{R})$ for the set of all r-times differentiable functions from $\mathbb{R} \rightarrow \mathbb{R}$. Notice that $\mathbb{R}[x] \subset C^{\infty}(\mathbb{R}) \subset \cdots \subset C^{r}(\mathbb{R}) \subset$ $C^{r-1}(\mathbb{R}) \subset \cdots \subset C^{1}(\mathbb{R}) \subset C^{0}(\mathbb{R})$.

