
3 A bit of review + generalizations

3.1 Fields and Vector Spaces

Definition 3.1. A field is a set F equipped with two associative and commutative binary operations + and
· such that

• (F,+) is an abelian group, with identity 0

• (F× = F− {0}, ·) is an abelian group, with identity 1

• a(b+ c) = ab+ ac (distributivity of · over +).

In other words, a field is a set where you can add, subtract, multiply, and divide just as you do with the
real numbers.

Example 3.2. Here are some examples of fields:

• Q,R,C

• Fp = (Z/pZ,+, ·) where p is prime (see next section)

Definition 3.3. A vector space over a field F is a set V with the two operations

• addition: v + w for v, w ∈ V and

• scalar multiplication: cv for c ∈ F, v ∈ V

where

• (V,+) is an abelian group with identity the zero vector 0⃗

• (ab)v = a(bv) for a, b ∈ F and v ∈ V (associativity of scalar multiplication)

• 1v = v

• a(v + w) = av + aw and (a+ b)v = av + bv for a, b ∈ F, v, w ∈ V (distributivity).

Exercise 3.4. Note that if 0 = 0F, then for any v ∈ V , 0v = 0⃗ (use distributivity). We usually just write the
symbol 0 for both zeroes, because of this relationship.

Example 3.5. Here are some examples of vector spaces over a field F. These are all probably quite familiar
if you let F = R.

• V = F

• V = Fn = F× F× · · · × F

• V =Mn×n(F), the set of all n× n matrices with entries in F

• V = F[x], the set of polynomials in x with coefficients in F

Definition 3.6. A subspace W of a vector space V over a field F is a nonempty subset closed under the
operations of addition and scalar multiplication.

A subspace W is proper if it is neither {0} ⊂ V nor V ⊂ V .

Example 3.7. The set of all continuous functions R → R, denoted C0(R), is a vector space over R. Observe
that R[x] is a vector subspace of C0(R). 7

Definition 3.8. Let V,W be vector spaces over a field F. A linear map (which is short for “F-linear map”)
is a function ϕ : V →W that preserves the structure of vector spaces:

7We write Cr(R) for the set of all r-times differentiable functions from R → R. Notice that R[x] ⊂ C∞(R) ⊂ · · · ⊂ Cr(R) ⊂
Cr−1(R) ⊂ · · · ⊂ C1(R) ⊂ C0(R).
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• ϕ(⃗0V ) = 0⃗W

• ϕ(v1 + v2) = ϕ(v1) + ϕ(v2) for v1, v2 ∈ V

• ϕ(cv) = cϕ(v) for v ∈ V , c ∈ F

Remark 3.9. In general, the word linear indicates that a map behaves like a linear function f(x) = ax + b,
in the sense that if we have two coefficients c1, c2 and two elements x1, x2, then

f(c1x1 + c2x2) = c1f(x1) + c2f(x2).

This will come up in 150B when you talk about modules over rings, which are generalizations of vector
spaces over fields.

Example 3.10. Let A ∈ Mn×m(R). (That is, n rows, m columns.) View A as a linear map A : Rm → Rn.
(Here, the domain of the function A is Rm and the codomain of the function A is Rn.)

• The nullspace of A is the set of all vectors in the domain that are sent to 0 by A:

null(A) = {v ∈ Rm | Av = 0 ∈ Rn}.

• The range of A is the set of all output vectors in the codomain of A:

range(A) = {Av ∈ Rn | v ∈ Rm}.

Check that null(A) is a subspace of Rm, and range(A) is a subspace of Rn.

Exercise 3.11. How many elements are there in the vector space F2
p? How many different proper subspaces

of F2
p are there? HW04

3.2 Equivalence classes and partitions

A partition P of a set S is a subdivision of S into nonoverlapping, nonempty subsets. Here is a precise
definition.

Definition 3.12. Let S be a set. A partition P = {Pi}i∈I is a set of subsets of S such that the following
conditions hold:

• For all i, Pi ̸= ∅.

• If i ̸= j, then Pi ∩ Pj = ∅.

• P =
⋃

i∈I Pi.

In other words, a partition P = {Pi}i∈I is a collection of nonempty subsets of S such that for all s ∈ S,
s ∈ Pi for exactly one i ∈ I .

In this case, S is the disjoint union of the subsets in P :

S =
∐
i∈I

Pi.

Exercise 3.13. What are all the partitions of the set [4]?

Recall that a relationR on a set S is a subset of S×S. (This is more general than a function.) If (a, b) ∈ R,
we usually write a ∼ b; however, note that a priori, we don’t know if this relationship is symmetric, since
(a, b) ̸= (b, a) in S × S.

We care more about equivalence relations, though:

Definition 3.14. An equivalence relation on a set S is a relation ∼ that is
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• reflexive: a ∼ a

• symmetric: if a ∼ b then b ∼ a

• transitive: if a ∼ b and b ∼ c, then a ∼ c

for all a, b, c ∈ S.

Definition 3.15. Let ∼ be an equivalence relation on S. Let a ∈ S. The equivalence class of a, denoted [a]
or ā, is the subset of S consisting of all elements that are related to a by ∼:

[a] = {b ∈ S | a ∼ b}.

We say that a is a representative of its equivalence class.

Exercise 3.16. Let a, b be elements in a group G. We say a is conjugate to b if there exists g ∈ G such that
b = gag−1. Prove that conjugacy is an equivalence relation. HW03

The following proposition states that equivalence relations and partitions are actually one and the same.

Proposition 3.17. An equivalence relation ∼ on a set S determines a partition P , and vice versa.

Proof. HW03

Remark 3.18. Let P denote the partition given by the equivalence relation ∼ on S. By the Axiom of Choice,
no matter how large the cardinality of P is, we are able to choose a representative from each subset in P .
That is, if P = {Pα}α∈I where I is an indexing set, it is possible to pick out a collection {sα}α∈I .

Remark 3.19. If S is empty, then the only partition is P = {}, i.e. P itself is the empty set. Then the
conditions that make P a partition are vacuously true.

3.3 Modular arithmetic

We have talked a bit about Z/nZ as well as the fields Fp. Let’s review their construction now using the ideas
of equivalence classes / partitions, and discuss what it means for a function (i.e. set map) to be well-defined.

Two integers a, b ∈ Z are congruent mod n if a− b ∈ nZ. In this case, we write a ≡ b mod n.

Exercise 3.20. Check that ≡ is an equivalence relation.

Let ā denote the equivalence class of a under the equivalence relation ≡. Observe that by the divi-
sion algorithm, the set of numbers {0, 1, . . . , n − 1} is a complete set of representatives (i.e. we have one
representative from every equivalence class). So, the partition corresponding to ≡ is

P = {0̄, 1̄, . . . , n− 1},

and we really think of k̄ as the subset
k̄ = k + nZ ⊂ Z.

Proposition 3.21. Addition and multiplication on Z/nZ, induced by +, · on Z, are well-defined.

Proof. Check that if a ≡ a′ and b ≡ b′, then

1. (a+ b) ≡ (a′ + b′) and

2. ab ≡ a′b′.

The concept of “well-definedness” doesn’t come from cold, hard mathematics, but rather our human
tendency to make errors when trying to define a function (i.e. a set map).

Sometimes mathematicians ask whether a function is well defined. What they mean is this: “Does the rule you
propose really assign to each element of the domain one and only one value in the codomain?”

- The Art of Proof, by Matthias Beck and Ross Geoghegan.
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Example 3.22. If I try to define a function f : N → R by saying “f(n) is the real number that squares to n”,
then I have not succeeded in defining a function, because, for example, it’s ambiguous what f(4) should
be. You would then tell me, “f is not a well-defined function.” By saying this you are not saying that f was
ever actually a mathematical function at all; you are saying that this rule doesn’t define a function.

Exercise 3.23. HW03 This exercise will show you an example of an assignment that is actually not well-
defined, and is therefore not a function, as well as an example where a function is actually defined success-
fully.

(a) Prove that the following assignment is not a well-defined function between sets:

φ : Z/10Z → Z/7Z
k̄ 7→ k̄.

(Recall that k̄ denotes the equivalence class of k in Z/nZ.)

(b) Prove that the following assignment is a well-defined function between sets:

φ : Z/10Z → Z/5Z
k̄ 7→ k̄.

4 Maps between groups

4.1 Homomorphisms

Definition 4.1. Let (S,□) and (T,▲) be groups. A homomorphism

φ : (S,□) → (T,▲)

is a (set) map φ : S → T such that for all a, b ∈ S,

φ(a□ b) = φ(a)▲φ(b).

Here’s a more standard-looking definition of a group homomorphism:

Definition 4.2. Let G,G′ be groups, written with multiplicative notation. A homomorphism

φ : G→ G′

is a map from G to G′ such that for all a, b ∈ G,

φ(ab) = φ(a)φ(b).

This homomorphism condition is probably the most important equation in this class.

Example 4.3. Here are some familiar examples of homomorphisms.

• det : GLn(R) → R×

• sgn : Sn → {±1}

• i : Sn → Sm where n ≤ m

• exp : R+ → R×, where x 7→ ex

• φ : Z+ → G where φ(n) = an for a fixed element a ∈ G

• | · | : C× → R×

17


