- $\bullet \ \phi(\vec{0}_V) = \vec{0}_W$
- $\phi(v_1 + v_2) = \phi(v_1) + \phi(v_2)$ for $v_1, v_2 \in V$
- $\phi(cv) = c\phi(v)$ for $v \in V$, $c \in \mathbb{F}$

Remark 3.9. In general, the word **linear** indicates that a map behaves like a linear function f(x) = ax + b, in the sense that if we have two coefficients c_1, c_2 and two elements x_1, x_2 , then

$$f(c_1x_1 + c_2x_2) = c_1f(x_1) + c_2f(x_2).$$

This will come up in 150B when you talk about modules over rings, which are generalizations of vector spaces over fields.

Example 3.10. Let $A \in M_{n \times m}(\mathbb{R})$. (That is, n rows, m columns.) View A as a linear map $A : \mathbb{R}^m \to \mathbb{R}^n$. (Here, the **domain** of the function A is \mathbb{R}^m and the **codomain** of the function A is \mathbb{R}^n .)

• The **nullspace** of *A* is the set of all vectors in the domain that are sent to 0 by *A*:

$$\operatorname{null}(A) = \{ v \in \mathbb{R}^m \mid Av = 0 \in \mathbb{R}^n \}.$$

• The **range** of *A* is the set of all output vectors in the codomain of *A*:

$$range(A) = \{ Av \in \mathbb{R}^n \mid v \in \mathbb{R}^m \}.$$

Check that null(A) is a subspace of \mathbb{R}^m , and range(A) is a subspace of \mathbb{R}^n .

Exercise 3.11. How many elements are there in the vector space \mathbb{F}_p^2 ? How many different *proper* subspaces of \mathbb{F}_p^2 are there? HW04

3.2 Equivalence classes and partitions

A **partition** P of a set S is a subdivision of S into nonoverlapping, nonempty subsets. Here is a precise definition.

Definition 3.12. Let S be a set. A **partition** $P = \{P_i\}_{i \in I}$ is a set of subsets of S such that the following conditions hold:

- For all $i, P_i \neq \emptyset$.
- If $i \neq j$, then $P_i \cap P_j = \emptyset$.
- $P = \bigcup_{i \in I} P_i$.

In other words, a partition $P = \{P_i\}_{i \in I}$ is a collection of nonempty subsets of S such that for all $s \in S$, $s \in P_i$ for exactly one $i \in I$.

In this case, *S* is the *disjoint union* of the subsets in *P*:

$$S = \coprod_{i \in I} P_i.$$

Exercise 3.13. What are all the partitions of the set [4]?

Recall that a **relation** R on a set S is a subset of $S \times S$. (This is more general than a *function*.) If $(a,b) \in R$, we usually write $a \sim b$; however, note that a priori, we don't know if this relationship is symmetric, since $(a,b) \neq (b,a)$ in $S \times S$.

We care more about equivalence relations, though:

Definition 3.14. An **equivalence relation** on a set S is a relation \sim that is

• reflexive: $a \sim a$

• **symmetric**: if $a \sim b$ then $b \sim a$

• **transitive**: if $a \sim b$ and $b \sim c$, then $a \sim c$

for all $a, b, c \in S$.

Definition 3.15. Let \sim be an equivalence relation on S. Let $a \in S$. The **equivalence class of** a, denoted [a] or \bar{a} , is the subset of S consisting of all elements that are related to a by \sim :

$$[a] = \{b \in S \mid a \sim b\}.$$

We say that a is a **representative** of its equivalence class.

Exercise 3.16. Let a, b be elements in a group G. We say a is **conjugate** to b if there exists $g \in G$ such that $b = gag^{-1}$. Prove that **conjugacy** is an equivalence relation. HW03

The following proposition states that *equivalence relations* and *partitions* are actually one and the same.

Proposition 3.17. An equivalence relation \sim on a set S determines a partition P, and vice versa.

Remark 3.18. Let P denote the partition given by the equivalence relation \sim on S. By the Axiom of Choice, no matter how large the cardinality of P is, we are able to choose a representative from each subset in P. That is, if $P = \{P_{\alpha}\}_{{\alpha} \in I}$ where I is an indexing set, it is possible to pick out a collection $\{s_{\alpha}\}_{{\alpha} \in I}$.

Remark 3.19. If S is empty, then the only partition is $P = \{\}$, i.e. P itself is the empty set. Then the conditions that make P a partition are vacuously true.

3.3 Modular arithmetic

We have talked a bit about $\mathbb{Z}/n\mathbb{Z}$ as well as the fields \mathbb{F}_p . Let's review their construction now using the ideas of equivalence classes / partitions, and discuss what it means for a function (i.e. set map) to be *well-defined*. Two integers $a, b \in \mathbb{Z}$ are **congruent mod** n if $a - b \in n\mathbb{Z}$. In this case, we write $a \equiv b \mod n$.

Exercise 3.20. Check that \equiv is an equivalence relation.

Let \bar{a} denote the equivalence class of a under the equivalence relation \equiv . Observe that by the division algorithm, the set of numbers $\{0,1,\ldots,n-1\}$ is a complete set of representatives (i.e. we have one representative from every equivalence class). So, the partition corresponding to \equiv is

$$P = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\},\$$

and we really think of \bar{k} as the subset

$$\bar{k} = k + n\mathbb{Z} \subset \mathbb{Z}.$$

Proposition 3.21. Addition and multiplication on $\mathbb{Z}/n\mathbb{Z}$, induced by $+, \cdot$ on \mathbb{Z} , are well-defined.

Proof. Check that if $a \equiv a'$ and $b \equiv b'$, then

- 1. $(a + b) \equiv (a' + b')$ and
- 2. $ab \equiv a'b'$.

The concept of "well-definedness" doesn't come from cold, hard mathematics, but rather our human tendency to make errors when trying to define a function (i.e. a set map).

Sometimes mathematicians ask whether a function is well defined. What they mean is this: "Does the rule you propose really assign to each element of the domain one and only one value in the codomain?"

- The Art of Proof, by Matthias Beck and Ross Geoghegan.

Example 3.22. If I try to define a function $f: \mathbb{N} \to \mathbb{R}$ by saying "f(n) is the real number that squares to n", then I have not succeeded in defining a function, because, for example, it's ambiguous what f(4) should be. You would then tell me, "f is not a well-defined function." By saying this you are not saying that f was ever actually a mathematical function at all; you are saying that this rule doesn't define a function.

Exercise 3.23. HW03 This exercise will show you an example of an assignment that is actually not well-defined, and is therefore not a function, as well as an example where a function is actually defined successfully.

(a) Prove that the following assignment is **not** a well-defined function between sets:

$$\varphi: \mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}/7\mathbb{Z}$$
$$\bar{k} \mapsto \bar{k}.$$

(Recall that \bar{k} denotes the equivalence class of k in $\mathbb{Z}/n\mathbb{Z}$.)

(b) Prove that the following assignment is a well-defined function between sets:

$$\varphi: \mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$$
$$\bar{k} \mapsto \bar{k}.$$

4 Maps between groups

4.1 Homomorphisms

Definition 4.1. Let (S, \Box) and (T, \blacktriangle) be groups. A homomorphism

$$\varphi:(S,\square)\to(T,\blacktriangle)$$

is a (set) map $\varphi: S \to T$ such that for all $a, b \in S$,

$$\varphi(a \square b) = \varphi(a) \blacktriangle \varphi(b).$$

Here's a more standard-looking definition of a group homomorphism:

Definition 4.2. Let G, G' be groups, written with multiplicative notation. A **homomorphism**

$$\varphi: G \to G'$$

is a map from G to G' such that for all $a, b \in G$,

$$\varphi(ab) = \varphi(a)\varphi(b).$$

This homomorphism condition is probably the most important equation in this class.

Example 4.3. Here are some familiar examples of homomorphisms.

- det : $GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$
- $\operatorname{sgn}: S_n \to \{\pm 1\}$
- $i: S_n \to S_m$ where $n \le m$
- $\exp: \mathbb{R}^+ \to \mathbb{R}^\times$, where $x \mapsto e^x$
- $\varphi: \mathbb{Z}^+ \to G$ where $\varphi(n) = a^n$ for a fixed element $a \in G$
- $|\cdot|: \mathbb{C}^{\times} \to \mathbb{R}^{\times}$

Example 4.4. Some important homomorphisms:

- Let G, G' be groups. The **trivial homomorphism** is the map $g \mapsto 1_{G'}$ for all $g \in G$.
- Let G be a group. The **identity homomorphism** is $id_G : G \to G$ given by $g \mapsto g$ for all $g \in G$.
- Let *H* be a subgroup of *G*. The **inclusion map** is $i: H \hookrightarrow G$ where $h \mapsto h$ for all $h \in H$.

Exercise 4.5. Let $\varphi: G \to G'$ be a group homomorphism. Prove the following facts.

(a) If $a_1, a_2, ..., a_n \in G$, then

$$\varphi(a_1 a_2 \cdots a_k) = \varphi(a_1)\varphi(a_2) \cdots \varphi(a_k).$$

- (b) $\varphi(1_G) = 1_{G'}$
- (c) If $a \in G$, then $\varphi(a^{-1}) = \varphi(a)^{-1}$.

Definition 4.6. Let $\varphi: G \to G'$ be a group homomorphism.

• The **kernel** of φ is

$$\ker \varphi = \{ g \in G \mid \varphi(g) = 1_{G'} \}.$$

• The **image** of φ is

$$\operatorname{img} \varphi = \{ g' \in G' \mid g' = \varphi(g) \text{ for some } g \in G \}.$$

Note that this is the same as

$$\varphi(G) = \{ \varphi(g) \mid g \in G \}.$$

We use both notations for the image.

Exercise 4.7. HW03 Let $\varphi : G \to G'$ be a homomorphism.

- (a) Prove that $\ker \varphi$ is a subgroup of G.
- (b) Prove that $img \varphi$ is a subgroup of G'.
- (c) Prove that $\ker \varphi = \{1_G\}$ if and only if φ is injective (as a set map).

Example 4.8. Here are some examples of kernels:

- The kernel of det : $GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$ is the subgroup of all matrices with determinant 1; this is called the *special linear group* $SL_n(\mathbb{R})$.
- The kernel of the sign homomorphism $\operatorname{sgn}: S_n \to \{\pm 1\}$ is called the **alternating group** A_n . This is the subgroup of all the *even* permutations.

Exercise 4.9. Let U denote the group of invertible upper triangular 2×2 matrices

$$\left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \mid a, b, d \in \mathbb{R}, \ ad \neq 0 \right\} \subset GL_n(\mathbb{R})$$

and let $\varphi:U\to\mathbb{R}^{\times}$ be the map that sends $A\mapsto a^2$. Prove that φ is a homomorphism, and determine its kernel and image.

Exercise 4.10. Let $f : \mathbb{R}^+ \to \mathbb{C}^\times$ be the map $f(x) = e^{ix}$. Prove that f is a homomorphism, and determine its kernel and image.

Definition 4.11. Here are some more important vocabulary words:

- A homomorphism $\varphi: G \to G'$ is an **isomorphism** if it is also a set bijection.
- A homomorphism from G to itself $(\varphi: G \to G)$ is called an **endomorphism**.
- An *isomorphism* from *G* to itself is called an **automorphism**.

Remark 4.12. Recall from MAT 108 that there are a couple ways to show that a set map $f: A \to B$ is a bijection.

One way to show that f is bijective is to show that it is both injective and surjective.

- To show that f is injective, you need to show that if f(a) = f(a'), then a = a'.
- To show that f is surjective, you need to show that for all $b \in B$, there is some $a \in A$ such that f(a) = b.

The other way is to exhibit an inverse function $f^{-1}: B \to A$ for f. You need to check that $f \circ f^{-1} = \mathrm{id}_B$ and $f^{-1} \circ f = \mathrm{id}_A$.

Exercise 4.13. Let $\varphi: G \to H$ be an *isomorphism*. Prove that for all $g \in G$, the order of g is the same as the order of $\varphi(g)$: $|g| = |\varphi(g)|$.

Exercise 4.14. Let G be a group. Prove that the map $\varphi: G \to G$, $x \mapsto x^2$, is an endomorphism of G if and only if G is abelian.

Exercise 4.15. HW03

- (a) Let p be a prime number. How many automorphisms does the cyclic group C_p have?
- (b) How many automorphisms does C_{24} have?

4.2 Cosets

As a running example, consider the group $\mathbb{Z}/3\mathbb{Z}$:

4.3 Counting formula

Exercise 4.16. Let $\varphi: G \to G'$ be a group homomorphism. Suppose that |G| = 18 and |G'| = 15, and that φ is not the trivial homomorphism. What is the $|\ker \varphi|$?

4.4 Normal subgroups

conjugation Prove that in a group, the products *ab* and *ba* are conjugate elements.

Exercise 4.17. Prove that every subgroup of index 2 is a normal subgroup.

Exercise 4.18. Let p and q be permutations in S_n . Prove that pq and qp have cycles of equal sizes.

Exercise 4.19. Let q be a 5-cycle in S_n , where $n \geq 6$.

- (a) What is the cycle type of q^{17} ?
- (b) In terms of n, how many permutations are there such that $pqp^{-1} = q$?

Exercise 4.20. For each of the following, determine whether σ_1 and σ_2 are conjugate to each other in S_9 . If they are conjugate, find a permutation $\tau \in S_9$ such that $\tau \sigma_1 \tau^{-1} = \sigma_2$.

(a)
$$\sigma_1 = (1\ 2)(3\ 4\ 5)$$
 and $\sigma_2 = (1\ 2\ 3)(4\ 5)$