e ¢(0y) = Ow
* d(vr +v2) = ¢(v1) + ¢(v2) for vy, vy € V
e (cv) = cop(v) forveV,ceF

Remark 3.9. In general, the word linear indicates that a map behaves like a linear function f(z) = ax + b,
in the sense that if we have two coefficients ¢1, ¢s and two elements x1, x5, then

fleizr + caza) = c1f(x1) + caf(22).

This will come up in 150B when you talk about modules over rings, which are generalizations of vector
spaces over fields.

Example 3.10. Let A € M, (R). (That is, n rows, m columns.) View A as a linear map A : R™ — R”".
(Here, the domain of the function A is R™ and the codomain of the function A is R".)

* The nullspace of A is the set of all vectors in the domain that are sent to 0 by A:

null(A) = {v e R™ | Av =0 € R"}.

¢ The range of A is the set of all output vectors in the codomain of A:

range(A) = {Av e R" |v € R™}.

Check that null(A) is a subspace of R, and range(A) is a subspace of R™.

Exercise 3.11. How many elements are there in the vector space F>? How many different proper subspaces
of F? are there? HW04

3.2 Equivalence classes and partitions

A partition P of a set S is a subdivision of S into nonoverlapping, nonempty subsets. Here is a precise
definition.

Definition 3.12. Let S be a set. A partition P = {P,},c; is a set of subsets of S such that the following
conditions hold:

e Foralli, P; # 0.
o Ifz;éj,theanﬁPj:(Z)
* P=U I

In other words, a partition P = {P,},¢; is a collection of nonempty subsets of S such that for all s € §,
s € P, for exactly one i € I.
In this case, S is the disjoint union of the subsets in P:

s=1[x-
iel
Exercise 3.13. What are all the partitions of the set [4]?

Recall that a relation R on a set S is a subset of S x S. (This is more general than a function.) If (a,b) € R,
we usually write a ~ b; however, note that a priori, we don’t know if this relationship is symmetric, since
(a,b) # (b,a)in S x S.

We care more about equivalence relations, though:

Definition 3.14. An equivalence relation on a set S is a relation ~ that is
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¢ reflexive: a ~ a

e symmetric: ifa ~ bthenb~a

e transitive: ifa ~ band b ~ ¢, thena ~ ¢
foralla,b,c € S.

Definition 3.15. Let ~ be an equivalence relation on S. Let @ € S. The equivalence class of a, denoted [a]
or q, is the subset of S consisting of all elements that are related to a by ~:

[a] ={be S|a~ b}
We say that a is a representative of its equivalence class.

Exercise 3.16. Let a,b be elements in a group G. We say « is conjugate to b if there exists g € G such that
b = gag~!. Prove that conjugacy is an equivalence relation. HW03

The following proposition states that equivalence relations and partitions are actually one and the same.
Proposition 3.17. An equivalence relation ~ on a set S determines a partition P, and vice versa.

Proof. HWO03 O

Remark 3.18. Let P denote the partition given by the equivalence relation ~ on S. By the Axiom of Choice,
no matter how large the cardinality of P is, we are able to choose a representative from each subset in P.
Thatis, if P = { P, }oecr where I is an indexing set, it is possible to pick out a collection {sq }acr-

Remark 3.19. If S is empty, then the only partition is P = {}, i.e. P itself is the empty set. Then the
conditions that make P a partition are vacuously true.

3.3 Modular arithmetic

We have talked a bit about Z/nZ as well as the fields IF,,. Let’s review their construction now using the ideas
of equivalence classes / partitions, and discuss what it means for a function (i.e. set map) to be well-defined.
Two integers a, b € Z are congruent mod n if @ — b € nZ. In this case, we write a = b mod n.

Exercise 3.20. Check that = is an equivalence relation.

Let a denote the equivalence class of a under the equivalence relation =. Observe that by the divi-
sion algorithm, the set of numbers {0, 1,...,n — 1} is a complete set of representatives (i.e. we have one
representative from every equivalence class). So, the partition corresponding to = is

P={0,1,...,n—1},

and we really think of k as the subset B
k=k+nZCLZ.

Proposition 3.21. Addition and multiplication on Z/nZ, induced by +, - on Z, are well-defined.
Proof. Check thatif a = a’ and b = V/, then
1. (a+b)=(a +b)and
2. ab=ad'V.
O

The concept of “well-definedness” doesn’t come from cold, hard mathematics, but rather our human
tendency to make errors when trying to define a function (i.e. a set map).
Sometimes mathematicians ask whether a function is well defined. What they mean is this: “Does the rule you
propose really assign to each element of the domain one and only one value in the codomain?”
- The Art of Proof, by Matthias Beck and Ross Geoghegan.
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Example 3.22. If I try to define a function f : N — R by saying “ f(n) is the real number that squares to n”,
then I have not succeeded in defining a function, because, for example, it's ambiguous what f(4) should
be. You would then tell me, “ f is not a well-defined function.” By saying this you are not saying that f was
ever actually a mathematical function at all; you are saying that this rule doesn’t define a function.

Exercise 3.23. HWO03 This exercise will show you an example of an assignment that is actually not well-
defined, and is therefore not a function, as well as an example where a function is actually defined success-
fully.

(a) Prove that the following assignment is not a well-defined function between sets:

0 : Z/10Z — Z)TZ
ki k.
(Recall that k denotes the equivalence class of k in Z/nZ.)
(b) Prove that the following assignment is a well-defined function between sets:
v : Z/10Z — 7Z./5Z
kv k.

4 Maps between groups
41 Homomorphisms
Definition 4.1. Let (S,0) and (T, A) be groups. A homomorphism
v:(5,0) = (T,a)
isa (set) map ¢ : S — T such that forall a,b € S,
p(aD1b) = p(a) A p(b).
Here’s a more standard-looking definition of a group homomorphism:

Definition 4.2. Let G, G’ be groups, written with multiplicative notation. A homomorphism
v:G—= G

is a map from G to G’ such that for all a,b € G,

| p(ab) = p(a)p (). |

This homomorphism condition is probably the most important equation in this class.
Example 4.3. Here are some familiar examples of homomorphisms.

o det: GL,(R) — R*

sgn: S, — {£1}

e ;:5,— S5, wheren <m

exp : RT — R*, where x + €©

¢ : Z* — G where p(n) = a" for a fixed element a € G

o |- |:C* =R~
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Example 4.4. Some important homomorphisms:
e Let G, G’ be groups. The trivial homomorphism is the map g — 1¢ forall g € G.
® Let G be a group. The identity homomorphism is idg : G — G givenby g — g forall g € G.
* Let H be a subgroup of G. The inclusion map is i : H — G where h+— hforall h € H.
Exercise 4.5. Let ¢ : G — G’ be a group homomorphism. Prove the following facts.

(@) Ifay,as,...,a, € G, then
plaiag--- ak) = <P(a1)<P(a2) T sﬂ(ak)-

(b) ¢(lc) = 1a
(c) Ifa € G, then p(a=t) = p(a)~L.
Definition 4.6. Let ¢ : G — G’ be a group homomorphism.

e The kernel of ¢ is
kero={g € G|plg) =1}

¢ The image of ¢ is
imgy ={¢' € G’ | ¢ = p(g) for some g € G}.

Note that this is the same as
(G) ={p(g) | g € G}

We use both notations for the image.
Exercise 4.7. HW03 Let ¢ : G — G’ be a homomorphism.
(a) Prove that ker ¢ is a subgroup of G.
(b) Prove that img ¢ is a subgroup of G'.
(c) Prove that ker ¢ = {15} if and only if ¢ is injective (as a set map).
Example 4.8. Here are some examples of kernels:

¢ The kernel of det : GL,,(R) — R* is the subgroup of all matrices with determinant 1; this is called the
special linear group SL, (R).

¢ The kernel of the sign homomorphism sgn : S,, — {£1} is called the alternating group A,,. This is
the subgroup of all the even permutations.

Exercise 4.9. Let U denote the group of invertible upper triangular 2 x 2 matrices

{[g 2} la,b,d € R, ad # o} C GLn(R)
and let ¢ : U — R* be the map that sends A — a®. Prove that ¢ is a homomorphism, and determine its
kernel and image.

Exercise 4.10. Let f : R* — C* be the map f(z) = ¢'*. Prove that f is a homomorphism, and determine its
kernel and image.

Definition 4.11. Here are some more important vocabulary words:
* A homomorphism ¢ : G — G’ is an isomorphism if it is also a set bijection.
* A homomorphism from G to itself (¢ : G — G) is called an endomorphism.

* An isomorphism from G to itself is called an automorphism.
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Remark 4.12. Recall from MAT 108 that there are a couple ways to show that a set map f : A - Bisa
bijection.

One way to show that f is bijective is to show that it is both injective and surjective.

¢ To show that f is injective, you need to show that if f(a) = f(a'), thena = a’.

¢ To show that f is surjective, you need to show that forall b € B, there is some a € A such that f(a) = b.

The other way is to exhibit an inverse function f~! : B — A for f. You need to check that fo f~! =idp
and f~1o f =id4.

Exercise 4.13. Let ¢ : G — H be an isomorphism. Prove that for all g € G, the order of g is the same as the
order of ¢(g): [g] = [ (g)]-

Exercise 4.14. Let G be a group. Prove that the map ¢ : G — G, z — 22, is an endomorphism of G if and
only if G is abelian.

Exercise 4.15. HWO03
(a) Let p be a prime number. How many automorphisms does the cyclic group C, have?

(b) How many automorphisms does Cy4 have?

4.2 Cosets

As a running example, consider the group Z/3Z:

37 0 3 6 9 12 15
1+3Z |1 4 7 10 13 16
2432 |12 5 8 11 14 17

4.3 Counting formula

Exercise 4.16. Let ¢ : G — G’ be a group homomorphism. Suppose that |G| = 18 and |G’| = 15, and that ¢
is not the trivial homomorphism. What is the | ker ¢|?

4.4 Normal subgroups

conjugation Prove that in a group, the products ab and ba are conjugate elements.

Exercise 4.17. Prove that every subgroup of index 2 is a normal subgroup.

Exercise 4.18. Let p and ¢ be permutations in S,,. Prove that pq and ¢p have cycles of equal sizes.
Exercise 4.19. Let g be a 5-cycle in S,,, where n > 6.

(a) What is the cycle type of ¢'7?

(b) In terms of n, how many permutations are there such that pgp~! = ¢?

Exercise 4.20. For each of the following, determine whether ¢, and o5 are conjugate to each other in Sy. If

they are conjugate, find a permutation 7 € Sy such that o171 = 0.

(@ o1 =(12)(345)and o3 = (123)(45)
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