
Exercise 4.9. Demonstrate in class Let U denote the group of invertible upper triangular 2× 2 matrices{[
a b
0 d

]
| a, b, d ∈ R, ad ̸= 0

}
⊂ GLn(R)

and let φ : U → R× be the map that sends A 7→ a2. Prove that φ is a homomorphism, and determine its
kernel and image.

Exercise 4.10. Let f : R+ → C× be the map f(x) = eix. Prove that f is a homomorphism, and determine its
kernel and image.

Definition 4.11. Here are some more important vocabulary words:

• A homomorphism φ : G→ G′ is an isomorphism if it is also a set bijection.

• A homomorphism from G to itself (φ : G→ G) is called an endomorphism.

• An isomorphism from G to itself is called an automorphism.

Remark 4.12. Recall from MAT 108 that there are a couple ways to show that a set map f : A → B is a
bijection.

One way to show that f is bijective is to show that it is both injective and surjective.

• To show that f is injective, you need to show that if f(a) = f(a′), then a = a′.

• To show that f is surjective, you need to show that for all b ∈ B, there is some a ∈ A such that f(a) = b.

The other way is to exhibit an inverse function f−1 : B → A for f . You need to check that f ◦ f−1 = idB
and f−1 ◦ f = idA.

Exercise 4.13. Let φ : G → H be an isomorphism. Prove that for all g ∈ G, the order of g is the same as the
order of φ(g): |g| = |φ(g)|.

Exercise 4.14. Let G be a group. Prove that the map φ : G → G, x 7→ x2, is an endomorphism of G if and
only if G is abelian.

Exercise 4.15. HW03

(a) Let p be a prime number. How many automorphisms does the cyclic group Cp have?

(b) How many automorphisms does C24 have?

4.2 Cosets

Before discussing cosets, review equivalence relations/partitions and modular arithmetic.

Definition 4.16. Let H be a subgroup of G, and let a ∈ G. The left coset of H containing a is the set

aH = {g ∈ G | g = ah for some h ∈ H}.

Some remarks:

• The set of all left cosets of H in G is {bH | b ∈ G}. (There are probably repeats!)

• Note that every element h ∈ H is in the same (left) coset (of H), the identity coset, which is the (left)
coset of H containing 1. This coset is the set H ⊂ G.

We can also make the same definition for right cosets. The right coset of H containing a is

Ha = {g ∈ G | g = ha for some h ∈ H}.
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Example 4.17. It’s useful to keep a concrete example in mind as a reference. In this example, let G = Z, and
let H be the subgroup 3Z. Note that the group operation is +. We can visualize the cosets of 3Z as the three
rows below:

3Z · · · -9 -6 -3 0 3 6 9 12 15 · · ·

1 + 3Z · · · -8 -5 -2 1 4 7 10 13 16 · · ·

2 + 3Z · · · -7 -4 -1 2 5 8 11 14 17 · · ·

I like to think of this as an infinite corn-on-the-cob, with the integers spiraling around the cob. In this
example, if you break the corn and look at a cross-section, there will be three kernels going around the
circle.

Proposition 4.18. Let H ≤ G. The left cosets of H form a partition of G. (The right cosets of H also form a
partition of G.)

Proof. By the definition of the set of left cosets, each coset is nonempty, and the union of all the cosets is G.
It remains to check that if two cosets have nonempty intersection, then they are the same coset. It suffices
to show that if a ∈ bH , then aH = bH .

Suppose a ∈ bH , i.e. there is some ha ∈ H such that a = bha, and therefore also b = ah−1
a . Since we want

to show a set equivalence, we should check double inclusion:

• (aH ⊆ bH) If ah ∈ aH , then ah = (bha)h = b(hah) ∈ bH .

• (bH ⊆ aH) If bh ∈ bH , then bh = (ah−1
a )h = a(h−1

a h) ∈ aH .

(The proof for right cosets is nearly identical.)

Because partitions and equivalence relations are logically the same thing, you can also try proving
Proposition 4.18 in terms of equivalence relations.

Exercise 4.19. Prove Proposition 4.18 by defining an equivalence relation on the elements of G such that
the equivalence classes agree with the set of left cosets.

Notation 4.20. We will sometimes write G/H to denote the set of left cosets of H . You will see later in this
course why this notation both makes sense and also is unfortunate. This is why I keep just writing “the set
of left cosets of H in G”.

The proof of the following proposition should hopefully give a better sense of how cosets relate to each
other.

Proposition 4.21. Let H ≤ G. All cosets of H (left or right!) have the same cardinality.

Proof. We first show that every left coset has the same cardinality as the identity coset H . Let gH be a left
coset of H , and consider the set map given by left multiplication by g:

(g·) : H → gH

h 7→ gh

Because g lives in a group, we automatically get an obvious inverse set map

(g−1·) : gH → H

x 7→ g−1x

(Note that x must necessarily be of the form ghx for a unique hx ∈ H , since because if ghx = gh′x, then by
cancellation hx = h′x. So this map is well-defined.)

Check for yourself that these two maps really are inverse set maps. Therefore g is a bijection, and so H
and gH have the same cardinality (by definition of cardinality).

To show that all right cosets have the same cardinality as H (which is both a left and right coset!), use
the same trip, but with the set map (·g) : H → Hg, right multiplication by g.
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The following example is a great one to keep in your pocket. Recall that S3 is the smallest nonabelian
group; this makes the cosets behave different from those in abelian groups. Also, S3 is written multiplica-
tively, unlike our previous concrete examples.

Example 4.22. The set of right cosets isn’t always the same as the set of left cosets! As an example, consider
H = S2 = ⟨(12)⟩ and G = S3. The left cosets of H are

• 1H = {1, (12)}

• (13)H = {(13), (13)(12)} = {(13), (123)}

• (23)H = {(23), (23)(12)} = {(23), (132)}

whereas the right cosets are

• 1H = {1, (12)}

• H(13) = {(13), (12)(13)} = {(13), (132)}

• H(23) = {(23), (23)(13)} = {(23), (123)}

A group homomorphism φ : G→ G′ is in particular a set map. Recall from Example 3.20 that the set of
subsets {φ−1(t) ⊂ G | t ∈ img(φ)} form a partition of G. Because of how well structured groups are, these
subsets turn out to exactly be the cosets of the kernel K = kerφ!

Remark 4.23. If you were paying attention, you’ll notice that I didn’t specify whether these were left or
right cosets. It turns out that for a special type of subgroup, called a normal subgroup, left and right cosets
agree. You will also later prove that kernels of homomorphisms are normal.

Proposition 4.24. Let φ : G → G′ be a homomorphism, and let a, b ∈ G. Let K = kerφ. The following
conditions are equivalent (TFAE):

(a) φ(a) = φ(b)

(b) a−1b ∈ K

(c) b ∈ aK

(d) bK = aK
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