4.3 Index of a subgroup, the Counting Formula

Let H be a subgroup of a group G.

Notation 4.25. The set of left cosets of *H* in *G* is denoted G/H. (The set of right cosets of *H* in *G* is denoted $H \setminus G$.)

Remark 4.26. *Warning:* In general, G/H is a just a set, not a group. We will see that if $G/H = H \setminus G$, then the group operation on *G* induces a group operation on the set G/H. In this case, *H* is a *normal subgroup*, and G/H, with the induced operation, is a *quotient group*.

Proposition 4.27. The subgroup $H \leq G$ has the same number of left and right cosets.

Proof. HW05

Definition 4.28. The index of *H* in *G*, denoted [G : H], is the number $(\in \mathbb{N} \cup \{\infty\})$ of left cosets of *H* in *G*.

Theorem 4.29. (The Counting Formula) Let $H \leq G$. Then $|G| = |H| \cdot [G : H]$.

Proof. First consider the case where $|G| < \infty$. Since G/H forms a partition of G, and every coset aH contains |H| elements, there are |G|/|H| left cosets in total.

Now suppose $|G| = \infty$. We will check that either |H| or [G : H] must be infinite too. (Note first that |H|, [G : H] are both natural numbers, i.e. ≥ 1 .) By way of contradiction, suppose that both |H| and [G : H] = k were finite. From each of the k = [G : H] left cosets of H, we can pick a representative; this gives us a set of representatives $\{a_1, a_2, \ldots, a_k\}$, with each from a different coset. Then $G = \bigcup_{i=1}^k a_i H$ contains $k \cdot |H| < \infty$ elements, which is a contradiction.

Corollary 4.30. • For $H \leq G$, |H| divides |G|, i.e. $|H| \mid |G|$.

• For $g \in G$, |g| divides |G|, i.e. $|g| \mid |G|$.

This is useful when classifying groups of a particular finite order.

Example 4.31. Let |G| = p where p is a prime number. For any non-identity $a \in G$. $G = \langle a \rangle$. Therefore there is only one isomorphism (equivalence) class of groups of order p prime.

Corollary 4.32. Let $\varphi : G \to G'$ be a homomorphism.

- $[G : \ker \varphi] = | \operatorname{img} \varphi |$ (Therefore $|G| = | \ker \varphi | | \operatorname{img} \varphi |$.)
- $|\ker \varphi| ||G|$
- $|\operatorname{img} \varphi| | |G|$ and $|\operatorname{img} \varphi| | |G'|$.

Exercise 4.33. HW04 Let $\varphi : G \to G'$ be a group homomorphism. Suppose that |G| = 18 and |G'| = 15, and that φ is not the trivial homomorphism. What is the $|\ker \varphi|$?

Example 4.34. Recall that $A_n = \ker \operatorname{sgn}$, where $\operatorname{sgn} : S_n \to \{\pm 1\}$ is the sign homomorphism. Therefore the order of $A_n = \frac{|S_n|}{2} = \frac{n!}{2}$.

Proposition 4.35. If $K \le H \le G$, then [G : K] = [G : H][H : K].

Proof. (Proof sketch.) First consider the case where both indices on the right side are finite, and consider partitions of *G* and *H* by cosets of *H* and *K*, respectively. Then consider the case where at least one of the indices on the right is infinite, and show that [G : K] has to be infinite as well.

Proposition 4.36. If $\varphi : G \to G'$ is an isomorphism, then the inverse *set* map is also an isomorphism.

Proof. HW05