4.7 Product groups

Here are some harder exercises involving normal subgroups that will become useful when we discuss product groups:

Exercise 4.72. HW05 Let K and H be subgroups of a group G.
(a) Prove that the intersection $K \cap H$ is a subgroup of G.
(b) Prove that if $K \unlhd G$, then $K \cap H \unlhd H$.

Exercise 4.73. HW05 Let H and K be subgroups of G.
(a) Prove that if $H K=K H$, then $H K$ is a subgroup of G.
(b) Prove that if H and K are both normal subgroups of G, then their intersection $H \cap K$ is also a normal subgroup of G.

Definition 4.74. Let (A, \star) and (B, \diamond) be groups. Then $(A \times B, \cdot)$ is a group under the multiplication rule defined by

$$
\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(a_{1} \star a_{2}, b_{1} \diamond b_{2}\right)
$$

for $a_{i} \in A, b_{i} \in B, i=1,2$.
Exercise 4.75. In this exercise, you will verify all the group axioms for $A \times B$.
(a) Prove that multiplication is associative.
(b) What's the identity element $A \times B$?
(c) What's the inverse of $(a, b) \in A \times B$?

Exercise 4.76. Prove that $A \times B$ is abelian if and only if both A and B are abelian.
The relationships among the groups A, B, and $A \times B$ is captured by the following maps:

Here i_{A} and i_{B} are injections; p_{A} and p_{B} are projections.
(You can look up the definition of these terms, but let's not focus on the nuanced definition of injections and projections in general, for now.)

Example 4.77. $\mathbb{Z} / 6 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$
The argument for $C_{6} \cong C_{2} \times C_{3}$ also works for arbitrary cyclic groups of order $r s$ where $\operatorname{gcd}(r, s)=1$:
Proposition 4.78. Let r and s be relatively prime integers. A cyclic group of order $r s$ is isomorphic to the product of a cyclic group of order r and a cyclic group of order s.

On the other hand, $C_{2} \times C_{2}$ is not a cyclic group; this is the Klein four group.
While building product groups is easy, it's harder to detect whether a given group is a product of two groups. The last part of the following proposition characterizes product groups.

Remark 4.79. Pay attention to the techniques used in the proof; the proof of each statement serves as good practice with normal groups.

Proposition 4.80. Let $H, K \leq G$. let $\mu: H \times K \rightarrow G$ be the multiplication map $\mu(h, k)=h k$. Its image is the subset

$$
H K=\{h k \mid h \in H, k \in K\} \subset G
$$

(a) μ is injective if and only if $H \cap K=\{1\}$.
(b) μ is a homomorphism from the product group $H \times K$ to G if and only if elements of K commute with elements of $H: h k=k h$.
(c) If $H \unlhd G$, then $H K \leq G$.
(d) $\mu: H \times K \rightarrow G$ is an isomorphism if and only if

- $H \cap K=\{1\}$
- $H K=G$
- $H, K \unlhd G$.

Proof. See Page 65 in the book, Proposition 2.11.4.
Remark 4.81. The multiplication map is a set map, a priori. It can even be bijective without being a homomorphism. For example, consider the subgroups $\left\langle\left(\begin{array}{ll}1 & 2)\end{array}\right\rangle\right.$ and $\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle$ inside S_{3}.

Exercise 4.82. Let G be a group of order 21. Suppose it contains two normal subgroups K and N, where $|K|=3$ and $|N|=7$. Prove that $G \cong K \times N$.

