4.7 Product groups

Here are some harder exercises involving normal subgroups that will become useful when we discuss product groups:

Exercise 4.72. HW05 Let *K* and *H* be subgroups of a group *G*.

- (a) Prove that the intersection $K \cap H$ is a subgroup of *G*.
- (b) Prove that if $K \leq G$, then $K \cap H \leq H$.

Exercise 4.73. HW05 Let *H* and *K* be subgroups of *G*.

- (a) Prove that if HK = KH, then HK is a subgroup of G.
- (b) Prove that if *H* and *K* are both *normal* subgroups of *G*, then their intersection *H* ∩ *K* is also a *normal* subgroup of *G*.

Definition 4.74. Let (A, \star) and (B, \diamond) be groups. Then $(A \times B, \cdot)$ is a group under the multiplication rule defined by

$$(a_1, b_1)(a_2, b_2) = (a_1 \star a_2, b_1 \diamond b_2)$$

for $a_i \in A$, $b_i \in B$, i = 1, 2.

Exercise 4.75. In this exercise, you will verify all the group axioms for $A \times B$.

- (a) Prove that multiplication is associative.
- (b) What's the identity element $A \times B$?
- (c) What's the inverse of $(a, b) \in A \times B$?

Exercise 4.76. Prove that $A \times B$ is abelian if and only if both A and B are abelian.

The relationships among the groups A, B, and $A \times B$ is captured by the following maps:

Here i_A and i_B are *injections*; p_A and p_B are *projections*.

(You can look up the definition of these terms, but let's not focus on the nuanced definition of injections and projections in general, for now.)

Example 4.77. $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

The argument for $C_6 \cong C_2 \times C_3$ also works for arbitrary cyclic groups of order *rs* where gcd(r, s) = 1:

Proposition 4.78. Let *r* and *s* be relatively prime integers. A cyclic group of order *rs* is isomorphic to the product of a cyclic group of order *r* and a cyclic group of order *s*.

On the other hand, $C_2 \times C_2$ is not a cyclic group; this is the Klein four group.

While building product groups is easy, it's harder to detect whether a given group is a product of two groups. The last part of the following proposition *characterizes* product groups.

Remark 4.79. Pay attention to the techniques used in the proof; the proof of each statement serves as good practice with normal groups.

Proposition 4.80. Let $H, K \leq G$. let $\mu : H \times K \to G$ be the multiplication map $\mu(h, k) = hk$. Its image is the subset

$$HK = \{hk \mid h \in H, k \in K\} \subset G.$$

- (a) μ is injective if and only if $H \cap K = \{1\}$.
- (b) μ is a homomorphism from the product *group* $H \times K$ to *G* if and only if elements of *K* commute with elements of H: hk = kh.
- (c) If $H \trianglelefteq G$, then $HK \le G$.
- (d) $\mu: H \times K \to G$ is an isomorphism if and only if
 - $H \cap K = \{1\}$
 - HK = G
 - $H, K \trianglelefteq G$.

Proof. See Page 65 in the book, Proposition 2.11.4.

Remark 4.81. The multiplication map is a set map, a priori. It can even be bijective without being a homomorphism. For example, consider the subgroups $\langle (1 2) \rangle$ and $\langle (1 2 3) \rangle$ inside S_3 .

Exercise 4.82. Let *G* be a group of order 21. Suppose it contains two *normal* subgroups *K* and *N*, where |K| = 3 and |N| = 7. Prove that $G \cong K \times N$.