4.8 Correspondence Theorem

Let $\varphi: G \rightarrow \mathcal{G}$ be a group homomorphism, and let $H \leq G$.
We may restrict φ to a homomorphism

$$
\begin{aligned}
\left.\varphi\right|_{H}: & H \\
& h \mapsto \mathcal{G} \\
& \mapsto \varphi(h)
\end{aligned}
$$

- $\operatorname{ker}\left(\left.\varphi\right|_{H}\right)=(\operatorname{ker} \varphi) \cap H$
- $\operatorname{img}\left(\left.\varphi\right|_{H}\right)=\varphi(H)$

Remark 4.84. Since $\left.\varphi\right|_{H}$ is a homomorphism, the order of the image $\varphi(H)$ divides both $|H|$ and $|\mathcal{G}|$. If $|H|$ and $|\mathcal{G}|$ have no common factors, then $H \leq \operatorname{ker} \varphi$.
Example 4.85. Recall A_{n} is the kernel of the sign homomorphism $\sigma: S_{n} \rightarrow \pm 1$.
Let q be a permutation with odd order, and let $H=\langle q\rangle$. Then $H \leq A_{n}$.
Proposition 4.86. Let $\varphi: G \rightarrow \mathcal{G}$ be a homomorphism with kernel K. Let $\mathcal{H} \leq \mathcal{G}$, and let $H=\varphi^{-1}(\mathcal{H})$.

1. Then $K \leq H \leq G$. (A chain of subgroups.)
2. If $\mathcal{H} \unlhd \mathcal{G}$, then $H \unlhd G$.
3. If φ is surjective and $H \unlhd G$, then $\mathcal{H} \unlhd \mathcal{G}$.

Proof. 1. Check carefully; note that φ^{-1} means preimage.
2. Suppose $\mathcal{H} \unlhd \mathcal{G}$. Let $x \in H, g \in G$. Then $\varphi\left(g x g^{-1}\right)=\varphi(g) \varphi(x) \varphi(g)^{-1} \in \mathcal{H}$ because $\mathcal{H} \unlhd \mathcal{G}$.
3. Suppose φ is surjective and $H \unlhd G$. Let $a \in \mathcal{H}, b \in \mathcal{G}$. Since φ is surjective, there exist elements $x \in H, y \in G$ such that $\varphi(x)=a, \varphi(y)=b$. Since H is normal, $y x y^{-1} \in H$, so $\varphi\left(y x y^{-1}\right)=b a b^{-1} \in \mathcal{H}$.

Example 4.87. Consider det : $G L_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{\times}$. Since \mathbb{R}^{\times}is abelian, $\mathbb{R}_{>0}^{\times} \unlhd \mathbb{R}^{\times}$. The preimage under det of the positive reals is the set of invertible matrices with positive determinant, and is therefore a normal subgroup of $G L_{n}(\mathbb{R})$.

Theorem 4.88. (The Correspondence Theorem) Let $\varphi: G \rightarrow \mathcal{G}$ be a surjective group homomorphism with kernel K. Then there is a bijective correspondence

$$
\{\text { subgroups of } G \text { that contain } K\} \leftrightarrow\{\text { subgroups of } \mathcal{G}\} \text {. }
$$

The correspondence is given by

$$
\mathcal{H} \leadsto \varphi^{-1}(\mathcal{H}) .
$$

Suppose H and \mathcal{H} are corresponding subgroups. Then:

- $H \unlhd G$ if and only if $\mathcal{H} \unlhd \mathcal{G}$.
- $|H|=|\mathcal{H}||K|$.

Proof. Here are the things to check:

1. $\varphi(H)$ is a subgroup of \mathcal{G}
2. $\varphi^{-1}(\mathcal{H})$ is a subgroup of G, and it contains K
3. $\mathcal{H} \unlhd \mathcal{G}$ if and only if $\varphi^{-1}(\mathcal{H}) \unlhd G$
4. Bijectivity of the correspondence: $\varphi\left(\varphi^{-1}(\mathcal{H})\right)=\mathcal{H}$ and $\varphi^{-1} \varphi(H)=H$.
5. $\left|\varphi^{-1}(\mathcal{H})\right|=|\mathcal{H}||K|$.

Exercise 4.89. Let $\varphi: G \rightarrow G^{\prime}$ be a surjective homomorphism between finite groups. Suppose $H \leq G$ and $H^{\prime} \leq G^{\prime}$ correspond to each other under the bijection in the Correspondence Theorem. Prove that $[G: H]=\left[G^{\prime}: H^{\prime}\right]$.

Exercise 4.90. Let C_{12} be generated by x and let C_{6} be generated by y. Consider the surjective homomorphism $\varphi: C_{12} \rightarrow C_{6}$ determined by $x \mapsto y$. Explicitly write down the correspondence between subsets given by the Correspondence Theorem. If you are claiming a group G has k subgroups, you must explain (briefly) why you've found all of them.

Example 4.91. Here's a diagram of the subgroup structure of S_{3} :

