
5 Symmetries of plane figures

5.1 Distance in R2

We can think of the additive group R2 as a group of vectors or a group of points in the plane. In any case,
Euclidean distance gives us a notion of distance between two elements x⃗, y⃗ ∈ R2:

d(x⃗, y⃗) =
√
(y1 − x1)2 + (y2 − x2)2.

This distance function is actually induced by the dot product, as follows.
Recall that for v⃗, w⃗ ∈ R2, the dot product of v⃗ and w⃗ is

v⃗ · w⃗ = v1w1 + v2w2.

The length of the vector v⃗, or the norm of v⃗ is given by

∥v⃗∥ =
√
v · v =

√
v21 + v22 .

Given vectors v, w ∈ R2 (thought of as points in R2), the distance between v and w is

d(v, w) = ∥w − v∥ = ∥v − w∥.

Now consider a linear map A : R2 → R2. If we choose choose a basis for the domain and codomain, we
can write A as a matrix

A =

[
a11 a12
a21 a22

]
Let a⃗1 denote the first column vector and let a⃗2 denote the second column vector.

Exercise 5.1. Check that Aei = ai for i = 1, 2.

Any vector v⃗ ∈ R2 can be written as a linear combination of the standard basis vectors e1 and e2 (because
{e1, e2} is a basis):

v⃗ =

[
v1
v2

]
= v1e1 + v2e2.

Since A is a linear map, we have

A⃗⃗v = A(v1e1 + v2e2) = v1Ae1 + v2Ae2 = v1a1 + v2a2.

In other words, the linear map A is determined by its value on the basis vectors e1 and e2.

5.2 The Orthogonal Group O(2)

When does a linear map A : R2 → R2 preserve distances, i.e.

d(x, y) = d(Ax,Ay)?

Intuitively, this should be the linear maps that rigidly rotate or reflect the plane, without any squeezing
or stretching. In particular, this means that the standard basis vectors e1 and e2 are sent to vectors a1 and
a2 which are still unit vectors that are orthogonal to each other.

Definition 5.2. Two vectors a1, a2 ∈ R2 are orthonormal if

• a1 · a2 = 0 (i.e. a1 ⊥ a2)

• ∥a1∥ = ∥a2∥ = 1 (i.e. a1 and a2 are unit vectors, i.e. vectors of length 1)

Definition 5.3. A matrix A = [a1 a2] is orthogonal if its columns {a1, a2} are orthonormal.
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Definition 5.4. The orthogonal group O(2) is the group of orthogonal 2× 2 matrices.

Exercise 5.5. Prove that if A is orthogonal, then A preserves distances.

It turns out that the converse is also true: 2× 2 matrices that preserve distance are orthogonal.
We now discuss what O(2) looks like as a group. Let

ρθ :=

[
cos θ − sin(θ)
sin θ cos θ

]
denote rotation by θ about the origin (counter-clockwise, of course). Let

τ =

[
1 0
0 −1

]
denote reflection across the e1-axis.

Fact 5.6. Any matrix in O(2) is either of the form ρθ or ρθτ .

• The set of orthogonal matrices that are just simple rotations {ρθ | θ ∈ [0, 2π) is the set of orientation-
preserving orthogonal matrices. In other words, the matrix takes the “front” of the plane to the “front”.

• On the other hand, the set of orthogonal matrices that are rotations composed with a reflection are
orientation-reversing; they take the “front” of R2 to the “back”.

This fact tells us that orthogonal actions such as reflection about a line that is not the e1-axis can be
written as the product of a rotation and the reflection τ .

Here are two important subgroups of O(2):

• S1 ∼= the set of rotations = {ρθ | θ ∈ [0, 2π) (We originally defined S1 as a subgroup of C×; notice that
there is an isomorphism between this group of rotation matrices and S1 the subgroup of C×.)

• Z/2Z ∼= ⟨τ⟩, the order 2 cyclic subgroup generated by the reflection τ . (Notice that τ = τ−1.)

Exercise 5.7. Prove that S1 ⊴ O(2). Solution: S1 has index 2.

5.3 O(2) is a semi-direct product

Temporarily write N = S1 and H = Z/2Z. Even though Fact 5.6 tells us that G = NH as a set, O(2) is not
the direct product of the subgroups N and H . This is because the elements of N and H don’t commute!
We already saw this when we looked at dihedral groups, which are themselves subgroups of O(2): for any
rotation ρ,

ρτρτ = 1 =⇒ τρτ = ρ−1.

Therefore if ρ ̸= ρ−1, then conjugation by τ does not fix ρ.
However, all is not lost, because N ⊴ O(2). It turns out that O(2) is a semi-direct product of S1 and Z/2Z.

Definition 5.8. Let G be a group, and let N,H ≤ G. If N ⊴ G, G = NH , and N ∩ H = {1}, then G is a
semi-direct product of N and H . This is written

G = N ⋊H.

Remark 5.9. This is not a definition I necessarily want you to memorize; I just want to show you how
similar the conditions are to those in the proposition characterizing product groups.

The underlying set of N ⋊H is still the Cartesian product N ×H ; however, multiplication is twisted by
conjugation. Let (n, h), (m, k) ∈ N ×H (as a set). Then their product in the semi-direct product N ⋊H is

(n, h) · (m, k) = (nch(m), hk)

where ch(m) = hmh−1 ∈ N is the conjugation of m by h. (This is where we need N to be normal in G.
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The multiplication formula might seem unnatural, but the following computation should hopefully
convince you that, if you already know N,H were subgroups of a bigger group G where we already have
multiplication, then the formula above is very natural.

Recall that G = NH , so every element can be written in the for nh for n ∈ N , h ∈ H . Let n1h1, n2h2 ∈
NH = G. Their product in G is

(n1h1)(n2h2) = n1h1n2h2.

We wish to move the n2 to the left of the h1 in order to write the product in the form nh. To do this, we can
rewrite our product:

n1h1n2h2 = n1h1n2(h
−1
1 h1)h2 = n1(h1n2h

−1
1 )h1h2 = n1ch1

(n2)h1h2 ∈ NH.

In other words, the cost of commuting n2 past h1 is conjugation by h1.

Fact 5.10. O(2) = S1 ⋊ Z/2Z.

Let ραa and ρβb be two elements in O(2), where ρα, ρβ ∈ S1 and a, b ∈ {1, τ} = Z/2Z. Then multiplica-
tion in O(2) is given by

(ραa)(ρβb) = ραca(ρβ)ab.

Notice that if a = 1, then conjugation by a does nothing (and we might as well have written ραaρβb as
ραρβb, which is already in the form we like).

On the other hand, if a = τ , then ca(ρβ) = ρ−1
β = ρ−β .

Example 5.11. To drive this idea home, let’s compute the product of these two orientation-reversing ele-
ments of O(2):

(ρατ)(ρβτ) = ρα(τρβτ
−1)(ττ)

= ραρ−βτ
2

= ρα−β .

The result is a rotation by an angle α− β. (Try it!)
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