5 Symmetries of plane figures

5.1 Distance in \mathbb{R}^{2}

We can think of the additive group \mathbb{R}^{2} as a group of vectors or a group of points in the plane. In any case, Euclidean distance gives us a notion of distance between two elements $\vec{x}, \vec{y} \in \mathbb{R}^{2}$:

$$
d(\vec{x}, \vec{y})=\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}} .
$$

This distance function is actually induced by the dot product, as follows.
Recall that for $\vec{v}, \vec{w} \in \mathbb{R}^{2}$, the dot product of \vec{v} and \vec{w} is

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2} .
$$

The length of the vector \vec{v}, or the norm of \vec{v} is given by

$$
\|\vec{v}\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

Given vectors $v, w \in \mathbb{R}^{2}$ (thought of as points in \mathbb{R}^{2}), the distance between v and w is

$$
d(v, w)=\|w-v\|=\|v-w\|
$$

Now consider a linear map $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. If we choose choose a basis for the domain and codomain, we can write A as a matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Let \vec{a}_{1} denote the first column vector and let \vec{a}_{2} denote the second column vector.
Exercise 5.1. Check that $A e_{i}=a_{i}$ for $i=1,2$.
Any vector $\vec{v} \in \mathbb{R}^{2}$ can be written as a linear combination of the standard basis vectors e_{1} and e_{2} (because $\left\{e_{1}, e_{2}\right\}$ is a basis):

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=v_{1} e_{1}+v_{2} e_{2}
$$

Since A is a linear map, we have

$$
\overrightarrow{A v}=A\left(v_{1} e_{1}+v_{2} e_{2}\right)=v_{1} A e_{1}+v_{2} A e_{2}=v_{1} a_{1}+v_{2} a_{2}
$$

In other words, the linear map A is determined by its value on the basis vectors e_{1} and e_{2}.

5.2 The Orthogonal Group $O(2)$

When does a linear map $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ preserve distances, i.e.

$$
d(x, y)=d(A x, A y) ?
$$

Intuitively, this should be the linear maps that rigidly rotate or reflect the plane, without any squeezing or stretching. In particular, this means that the standard basis vectors e_{1} and e_{2} are sent to vectors a_{1} and a_{2} which are still unit vectors that are orthogonal to each other.

Definition 5.2. Two vectors $a_{1}, a_{2} \in \mathbb{R}^{2}$ are orthonormal if

- $a_{1} \cdot a_{2}=0$ (i.e. $a_{1} \perp a_{2}$)
- $\left\|a_{1}\right\|=\left\|a_{2}\right\|=1$ (i.e. a_{1} and a_{2} are unit vectors, i.e. vectors of length 1)

Definition 5.3. A matrix $A=\left[a_{1} a_{2}\right]$ is orthogonal if its columns $\left\{a_{1}, a_{2}\right\}$ are orthonormal.

Definition 5.4. The orthogonal group $O(2)$ is the group of orthogonal 2×2 matrices.
Exercise 5.5. Prove that if A is orthogonal, then A preserves distances.
It turns out that the converse is also true: 2×2 matrices that preserve distance are orthogonal.
We now discuss what $O(2)$ looks like as a group. Let

$$
\rho_{\theta}:=\left[\begin{array}{cc}
\cos \theta & -\sin (\theta) \\
\sin \theta & \cos \theta
\end{array}\right]
$$

denote rotation by θ about the origin (counter-clockwise, of course). Let

$$
\tau=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

denote reflection across the e_{1}-axis.
Fact 5.6. Any matrix in $O(2)$ is either of the form ρ_{θ} or $\rho_{\theta} \tau$.

- The set of orthogonal matrices that are just simple rotations $\left\{\rho_{\theta} \mid \theta \in[0,2 \pi)\right.$ is the set of orientationpreserving orthogonal matrices. In other words, the matrix takes the "front" of the plane to the "front".
- On the other hand, the set of orthogonal matrices that are rotations composed with a reflection are orientation-reversing; they take the "front" of \mathbb{R}^{2} to the "back".

This fact tells us that orthogonal actions such as reflection about a line that is not the e_{1}-axis can be written as the product of a rotation and the reflection τ.

Here are two important subgroups of $O(2)$:

- $S^{1} \cong$ the set of rotations $=\left\{\rho_{\theta} \mid \theta \in[0,2 \pi)\right.$ (We originally defined S^{1} as a subgroup of \mathbb{C}^{\times}; notice that there is an isomorphism between this group of rotation matrices and S^{1} the subgroup of \mathbb{C}^{\times}.)
- $\mathbb{Z} / 2 \mathbb{Z} \cong\langle\tau\rangle$, the order 2 cyclic subgroup generated by the reflection τ. (Notice that $\tau=\tau^{-1}$.)

Exercise 5.7. Prove that $S^{1} \unlhd O(2)$. Solution: S^{1} has index 2 .

5.3 $O(2)$ is a semi-direct product

Temporarily write $N=S^{1}$ and $H=\mathbb{Z} / 2 \mathbb{Z}$. Even though Fact 5.6 tells us that $G=N H$ as a set, $O(2)$ is not the direct product of the subgroups N and H. This is because the elements of N and H don't commute! We already saw this when we looked at dihedral groups, which are themselves subgroups of $O(2)$: for any rotation ρ,

$$
\rho \tau \rho \tau=1 \Longrightarrow \tau \rho \tau=\rho^{-1}
$$

Therefore if $\rho \neq \rho^{-1}$, then conjugation by τ does not fix ρ.
However, all is not lost, because $N \unlhd O(2)$. It turns out that $O(2)$ is a semi-direct product of S^{1} and $\mathbb{Z} / 2 \mathbb{Z}$.
Definition 5.8. Let G be a group, and let $N, H \leq G$. If $N \unlhd G, G=N H$, and $N \cap H=\{1\}$, then G is a semi-direct product of N and H. This is written

$$
G=N \rtimes H
$$

Remark 5.9. This is not a definition I necessarily want you to memorize; I just want to show you how similar the conditions are to those in the proposition characterizing product groups.

The underlying set of $N \rtimes H$ is still the Cartesian product $N \times H$; however, multiplication is twisted by conjugation. Let $(n, h),(m, k) \in N \times H$ (as a set). Then their product in the semi-direct product $N \rtimes H$ is

$$
(n, h) \cdot(m, k)=\left(n c_{h}(m), h k\right)
$$

where $c_{h}(m)=h m h^{-1} \in N$ is the conjugation of m by h. (This is where we need N to be normal in G.

The multiplication formula might seem unnatural, but the following computation should hopefully convince you that, if you already know N, H were subgroups of a bigger group G where we already have multiplication, then the formula above is very natural.

Recall that $G=N H$, so every element can be written in the for $n h$ for $n \in N, h \in H$. Let $n_{1} h_{1}, n_{2} h_{2} \in$ $N H=G$. Their product in G is

$$
\left(n_{1} h_{1}\right)\left(n_{2} h_{2}\right)=n_{1} h_{1} n_{2} h_{2}
$$

We wish to move the n_{2} to the left of the h_{1} in order to write the product in the form $n h$. To do this, we can rewrite our product:

$$
n_{1} h_{1} n_{2} h_{2}=n_{1} h_{1} n_{2}\left(h_{1}^{-1} h_{1}\right) h_{2}=n_{1}\left(h_{1} n_{2} h_{1}^{-1}\right) h_{1} h_{2}=n_{1} c_{h_{1}}\left(n_{2}\right) h_{1} h_{2} \in N H
$$

In other words, the cost of commuting n_{2} past h_{1} is conjugation by h_{1}.
Fact 5.10. $O(2)=S_{1} \rtimes \mathbb{Z} / 2 \mathbb{Z}$.
Let $\rho_{\alpha} a$ and $\rho_{\beta} b$ be two elements in $O(2)$, where $\rho_{\alpha}, \rho_{\beta} \in S_{1}$ and $a, b \in\{1, \tau\}=\mathbb{Z} / 2 \mathbb{Z}$. Then multiplication in $O(2)$ is given by

$$
\left(\rho_{\alpha} a\right)\left(\rho_{\beta} b\right)=\rho_{\alpha} c_{a}\left(\rho_{\beta}\right) a b
$$

Notice that if $a=1$, then conjugation by a does nothing (and we might as well have written $\rho_{\alpha} a \rho_{\beta} b$ as $\rho_{\alpha} \rho_{\beta} b$, which is already in the form we like).

On the other hand, if $a=\tau$, then $c_{a}\left(\rho_{\beta}\right)=\rho_{\beta}^{-1}=\rho_{-\beta}$.
Example 5.11. To drive this idea home, let's compute the product of these two orientation-reversing elements of $O(2)$:

$$
\begin{aligned}
\left(\rho_{\alpha} \tau\right)\left(\rho_{\beta} \tau\right) & =\rho_{\alpha}\left(\tau \rho_{\beta} \tau^{-1}\right)(\tau \tau) \\
& =\rho_{\alpha} \rho_{-\beta} \tau^{2} \\
& =\rho_{\alpha-\beta}
\end{aligned}
$$

The result is a rotation by an angle $\alpha-\beta$. (Try it!)

