5 Symmetries of plane figures

5.1 Distance in R?

We can think of the additive group R? as a group of vectors or a group of points in the plane. In any case,
Euclidean distance gives us a notion of distance between two elements 7, i € R?:

d(Z,7) = V(g — 21)? + (g2 — 22)*.

This distance function is actually induced by the dot product, as follows.
Recall that for ¥, @ € R?, the dot product of ¥ and 7 is

U W = viw + Vaws.

The length of the vector ¥, or the norm of v'is given by

17]] = Vv -v=1/v?+ 3.
Given vectors v, w € R? (thought of as points in R?), the distance between v and w is
d(v,w) = lw =l = [lv —w].

Now consider a linear map A : R? — R2. If we choose choose a basis for the domain and codomain, we
can write A as a matrix
al a
A= |: 11 12:|

a21 Q22
Let d@; denote the first column vector and let @y denote the second column vector.
Exercise 5.1. Check that Ae; = a; fori =1,2.

Any vector 7 € R? can be written as a linear combination of the standard basis vectors e; and e, (because
{e1, €2} is a basis):

- U1
v = = vie1 + vaes.
Vg
Since A is a linear map, we have
AY = A(v161 + ’0262) = U1A€1 + UQABQ = v1a1 + v209.

In other words, the linear map A is determined by its value on the basis vectors e; and e,.

5.2 The Orthogonal Group O(2)
When does a linear map A : R?> — R? preserve distances, i.e.
d(z,y) = d(Az, Ay)?

Intuitively, this should be the linear maps that rigidly rotate or reflect the plane, without any squeezing
or stretching. In particular, this means that the standard basis vectors e; and e, are sent to vectors a; and
az which are still unit vectors that are orthogonal to each other.

Definition 5.2. Two vectors a1, as € R? are orthonormal if
® ay-as = 0 (1e ay L ag)
® |lai]| = ||az]| = 1 (i.e. a1 and ay are unit vectors, i.e. vectors of length 1)

Definition 5.3. A matrix A = [a; as] is orthogonal if its columns {a1, as} are orthonormal.
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Definition 5.4. The orthogonal group O(2) is the group of orthogonal 2 x 2 matrices.
Exercise 5.5. Prove that if A is orthogonal, then A preserves distances.

It turns out that the converse is also true: 2 x 2 matrices that preserve distance are orthogonal.
We now discuss what O(2) looks like as a group. Let

- {0050 - sm(e)}

sin 6 cos 0

denote rotation by 6 about the origin (counter-clockwise, of course). Let

b4

denote reflection across the e;-axis.
Fact 5.6. Any matrix in O(2) is either of the form py or pyT.

¢ The set of orthogonal matrices that are just simple rotations {py | 6 € [0, 27) is the set of orientation-
preserving orthogonal matrices. In other words, the matrix takes the “front” of the plane to the “front”.

® On the other hand, the set of orthogonal matrices that are rotations composed with a reflection are
orientation-reversing; they take the “front” of R? to the “back”.

This fact tells us that orthogonal actions such as reflection about a line that is not the e;-axis can be
written as the product of a rotation and the reflection 7.
Here are two important subgroups of O(2):

e 5! = the set of rotations = {py | 6 € [0, 27) (We originally defined S* as a subgroup of C*; notice that
there is an isomorphism between this group of rotation matrices and S* the subgroup of C*.)

e Z/2Z = (1), the order 2 cyclic subgroup generated by the reflection 7. (Notice that 7 = 771.)

Exercise 5.7. Prove that S' < O(2). Solution: S! has index 2.

5.3 O(2) is a semi-direct product

Temporarily write N = S and H = Z/2Z. Even though Fact 5.6 tells us that G = N H as a set, O(2) is not
the direct product of the subgroups N and H. This is because the elements of N and H don’t commute!
We already saw this when we looked at dihedral groups, which are themselves subgroups of O(2): for any

rotation p,

prpr =1 = 7pT7 =p L

Therefore if p # p~!, then conjugation by 7 does not fix p.
However, all is not lost, because N <0 O(2). It turns out that O(2) is a semi-direct product of S* and Z /27Z.

Definition 5.8. Let G bea group, andlet N;H < G. If N <G, G = NH,and NN H = {1}, thenGisa
semi-direct product of N and H. This is written

G =N x H.

Remark 5.9. This is not a definition I necessarily want you to memorize; I just want to show you how
similar the conditions are to those in the proposition characterizing product groups.

The underlying set of N x H is still the Cartesian product N x H; however, multiplication is twisted by
conjugation. Let (n, h), (m, k) € N x H (as a set). Then their product in the semi-direct product N x H is

(n,h) - (m, k) = (nep(m), hk)

where ¢, (m) = hmh™! € N is the conjugation of m by h. (This is where we need N to be normal in G.
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The multiplication formula might seem unnatural, but the following computation should hopefully
convince you that, if you already know N, H were subgroups of a bigger group G where we already have
multiplication, then the formula above is very natural.

Recall that G = N H, so every element can be written in the for nh forn € N, h € H. Let nihy,nahs €
NH = G. Their product in G is

(’nlhl)(nghg) = n1h1n2h2.

We wish to move the ny to the left of the ; in order to write the product in the form nh. To do this, we can
rewrite our product:

’nlhl’nghg = nlhlng(hflhl)hz = nl(hlnghfl)hlhg = MN1Ch,y (ng)hlhg € NH.
In other words, the cost of commuting n, past h; is conjugation by h;.
Fact5.10. O(2) = S; X Z/2Z.

Let poa and pgb be two elements in O(2), where p,, pg € S1 and a,b € {1,7} = Z/2Z. Then multiplica-
tion in O(2) is given by
(Paa)(psb) = paca(ps)ab.

Notice that if @ = 1, then conjugation by a does nothing (and we might as well have written p,apgb as
Papsb, which is already in the form we like).
On the other hand, if a = 7, then ¢, (pg) = pgl =p_g.

Example 5.11. To drive this idea home, let’s compute the product of these two orientation-reversing ele-
ments of O(2):

(pa™)(psT) = pa(TpaT™)(7T)
= pap-pT°
= Pa—p-

The result is a rotation by an angle o — 3. (Try it!)
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