5.4 Isometries of the plane

Definition 5.12. A function $f : \mathbb{R}^2 \to \mathbb{R}^2$ is an **isometry** if it preserves distances:

$$d(p,q) = d(f(p), f(q))$$
 for all points $p, q \in \mathbb{R}^2$

Let $\text{Isom}(\mathbb{R}^2)$ denote the group of isometries of \mathbb{R}^2 .

We think of isometries of \mathbb{R}^2 as **symmetries** of the plane. In particular, we can study the symmetries of the plane by studying symmetries of **plane figures**. These are subsets of the plane, such as the drawing of a stick figure. (See the book for pictures of various symmetries of plane figures.)

Fact 5.13. Isom(\mathbb{R}^2) is *generated* by the following elements. Let *x* be a point in \mathbb{R}^2 :

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

• **Translations**: for a translation vector $v \in \mathbb{R}^2$, and a point $x \in \mathbb{R}^2$,

$$t_v(x) = x + v.$$

• **Rotations**: for an angle $\theta \in S^1$ and a point $x \in \mathbb{R}^2$,

$$\rho_{\theta}(x) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• **Reflection across the** e_1 **-axis**: for a point $x \in \mathbb{R}^2$,

$$\tau(x) = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$$

Remark 5.14. Warning: The points in \mathbb{R}^2 are those being moved around by the isometries. The translations vectors $v \in \mathbb{R}^2$ are **not** the same as the points in the plane. You should think of them as velocity vectors.

Proposition 5.15. The subgroup of translations $T = \{t_v \mid v \in \mathbb{R}^2\} \leq \text{Isom}(\mathbb{R}^2)$ is normal.

Proof. For any $g \in \text{Isom}(\mathbb{R}^2)$, we need to show that gt_vg^{-1} is also a translation. It suffices to just check the cases where g is a generator, since every isometry is a composition of these.

First check that T is a subgroup; then the conjugation of t_v by any translations is necessarily also a translation.

Next, let $g = \rho_{\theta}$, and let $c = \cos \theta$ and $s = \sin \theta$. The rotation matrix for ρ_{θ} and $\rho_{\theta}^{-1} = \rho_{-\theta}$ are

$$\rho_{\theta} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \quad \text{and} \quad \rho_{-\theta} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$$

respectively. (Use the fact that cosine is an even function, and sine is an odd function.) Compute that

$$\rho_{\theta} t_v \rho_{-\theta} = t_{\rho_{\theta} v}.$$

Third, let $g = \tau$. Compute that

$$\tau t_v \tau = t_{\tau v}$$

Exercise 5.16. HW07 We used \mathbb{R}^2 to describe the points on the plane. We could equivalently use \mathbb{C} , the complex plane. Since we use the same notion of distance for points in the complex plane, as metric spaces, \mathbb{R}^2 is the same as \mathbb{C} . Write formulas for the generators of $Isom(\mathbb{C})$ in terms of the complex variable z = x + iy.

Exercise 5.17. HW07 Prove that a conjugate of a glide reflection in $\text{Isom}(\mathbb{R}^2)$ is also a glide reflection, and that the glide vectors have the same length.