5.4 Isometries of the plane

Definition 5.12. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an isometry if it preserves distances:

$$
d(p, q)=d(f(p), f(q)) \quad \text { for all points } p, q \in \mathbb{R}^{2}
$$

Let $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ denote the group of isometries of \mathbb{R}^{2}.
We think of isometries of \mathbb{R}^{2} as symmetries of the plane. In particular, we can study the symmetries of the plane by studying symmetries of plane figures. These are subsets of the plane, such as the drawing of a stick figure. (See the book for pictures of various symmetries of plane figures.)

Fact 5.13. $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ is generated by the following elements. Let x be a point in \mathbb{R}^{2} :

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

- Translations: for a translation vector $v \in \mathbb{R}^{2}$, and a point $x \in \mathbb{R}^{2}$,

$$
t_{v}(x)=x+v
$$

- Rotations: for an angle $\theta \in S^{1}$ and a point $x \in \mathbb{R}^{2}$,

$$
\rho_{\theta}(x)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

- Reflection across the e_{1}-axis: for a point $x \in \mathbb{R}^{2}$,

$$
\tau(x)=\left[\begin{array}{c}
x_{1} \\
-x_{2}
\end{array}\right]
$$

Remark 5.14. Warning: The points in \mathbb{R}^{2} are those being moved around by the isometries. The translations vectors $v \in \mathbb{R}^{2}$ are not the same as the points in the plane. You should think of them as velocity vectors.
Proposition 5.15. The subgroup of translations $T=\left\{t_{v} \mid v \in \mathbb{R}^{2}\right\} \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$ is normal.
Proof. For any $g \in \operatorname{Isom}\left(\mathbb{R}^{2}\right)$, we need to show that $g t_{v} g^{-1}$ is also a translation. It suffices to just check the cases where g is a generator, since every isometry is a composition of these.

First check that T is a subgroup; then the conjugation of t_{v} by any translations is necessarily also a translation.

Next, let $g=\rho_{\theta}$, and let $c=\cos \theta$ and $s=\sin \theta$. The rotation matrix for ρ_{θ} and $\rho_{\theta}^{-1}=\rho_{-\theta}$ are

$$
\rho_{\theta}=\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right] \quad \text { and } \quad \rho_{-\theta}=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]
$$

respectively. (Use the fact that cosine is an even function, and sine is an odd function.) Compute that

$$
\rho_{\theta} t_{v} \rho_{-\theta}=t_{\rho_{\theta} v}
$$

Third, let $g=\tau$. Compute that

$$
\tau t_{v} \tau=t_{\tau v}
$$

Exercise 5.16. HW07 We used \mathbb{R}^{2} to describe the points on the plane. We could equivalently use \mathbb{C}, the complex plane. Since we use the same notion of distance for points in the complex plane, as metric spaces, \mathbb{R}^{2} is the same as \mathbb{C}. Write formulas for the generators of $\operatorname{Isom}(\mathbb{C})$ in terms of the complex variable $z=x+i y$.

Exercise 5.17. HW07 Prove that a conjugate of a glide reflection in $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ is also a glide reflection, and that the glide vectors have the same length.

