
5.5 Connecting the geometry with the algebra

Question 5.17. Let ℓ be the line of reection of the isometry ρθτ ∈ O(2). What is the the angle the line ℓ
makes with the e1-axis?

Let’s use polar coordinates; we will represent points in the plane as points in the complex plane.
Let reiα ∈ C. Then

ρθτ(re
iα) = ρθ(re

iα) = re−iα · eiθ = rei(θ−α)

In other words, the reection ρθτ swaps the positions of the two points

reiα ↔ rei(θ−α)

Hence the angle that the mirror line ℓ makes an angle of

α+ (θ − α)

2
=

θ

2

with the e1-axis.

Exercise 5.18. Check that the points on the line ℓ are indeed xed by the reection ρθτ .

Question 5.19. Let g = taρατ be a glide reection.

(a) What is the angle that the line of reection makes with the e1-axis?

(b) What is the glide vector v?

Notice that translations do not affect the angle that the line of reection makes with the horizontal axis.
To answer (a), let ḡ = ρατ be the part of g in O(2). (We will talk more about g vs. ḡ when we talk about discrete
subgroups of Isom(R2).) By the previous exercise, we know the line of reection makes an angle of α2 with
the e1-axis.

To answer (b), we rst observe that g2 is just a translation, specically by twice the glide vector, 2v. So we
rst compute g2, using our knowledge of the semi-direct product structures of Isom(R2) and O(2):

g2 = (taρατ)(taρατ) = ta(ρατ)ta(ρατ) = tatρατ(a)(ρατ)(ρατ) = ta+ρατ(a)

Therefore the glide vector for g is v = 1
2 (a+ ρατ(a)).

Exercise 5.20. HW07 Prove that a conjugate of a glide reection in Isom(R2) is also a glide reection, and
that the glide vectors have the same length.

5.6 Discrete subgroups of Isom(R2)

Let H ≤ Isom(R2).

• H contains an arbitrarily small translation if, for any ε > 0, there is a translation tv ∈ H such that
0 ≤ v < ε.

• Similarly, H contains arbitrarily small rotations if, for any ε > 0, there is a rotation ρθ ∈ H such that
0 ≤ θ < ε.

Denition 5.21. A group G of isometries of the plane (i.e. G ≤ Isom(R2)) is discrete if it does not contain
arbitrarily small translations or rotations.

In other words, G is discrete if there exists a real number ε such that

• if tv ∈ G and v ̸= 0 (i.e. tv ̸= id), then v > ε, and

• if ρθ ∈ G, where θ ∈ [−π,π), then θ ≥ ε.

Given a discrete group of isometries G ≤ Isom(R2), we will study the following subgroups:
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• the translation group L ≤ G, a subgroup of the group of translations T ≤ Isom(R2)

• the point group G, a subgroup of the orthogonal group O(2) ≤ Isom(R2).

Exercise 5.22. Explain why, in the setup above, G ∼= L⋊G.

The following theorem classies all possible translation groups:

Theorem 5.23. Every discrete subgroup L ≤ T ∼= R2 is one of the following:

• the zero group: L = 0

• the set of integer multiples of a nonzero vector a: L = Za

• the set of integer combinations of two linearly independent vectors a and b: L = Za + Zb. Groups of
this type are called lattices.

The following theorem classies all possible point groups:

Theorem 5.24 (Crystallographic Restriction). LetΛ be a discrete subgroup ofR2, and let Sym(Λ) ≤ Isom(R2)
denote the group of symmetries of Λ.

Let H ≤ O(2)  Sym(λ), and suppose that Λ ̸= 0. Then

1. every rotation in H has order 1,2,3,4, or 6, and

2. H is one of the groups Cn or Dn, where n ∈ 1, 2, 3, 4, 6.

Proof. It sufces to prove (a). Let ρθ be a rotation in H . Let a ∈ Λ be a minimal length translation vector
ta ∈ Sym(Λ). Then ρθta = tρθ(a) ∈ Sym(Λ), so ρθ(a) ∈ Λ. Let b = ρ(a)− a:

•
a

ρθ(a)
b

θ

From the gure, we see that ∥b∥ < ∥a∥ if θ < π3. So by minimality of a, we must have θ ≥ π3. Therefore
ρθ ≤ 6.

We can easily construct lattices Λ with symmetries ρθ of order 1, 2, 3, 4, 6. Try this yourself.
It remains to show that θ = 2π5 is impossible. Let ϕ = 2π5. If ρϕ ∈ H , then b = ρ2ϕ(a) + a ∈ Λ as well.

But then b is shorter than a, which again contradicts the minimality of a. Use trigonometric functions to prove
this for yourself!
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