5.5 Connecting the geometry with the algebra

Question 5.17. Let ℓ be the line of reflection of the isometry $\rho_{\theta} \tau \in O(2)$. What is the the angle the line ℓ makes with the e_{1}-axis?

Let's use polar coordinates; we will represent points in the plane as points in the complex plane.
Let $r e^{i \alpha} \in \mathbb{C}$. Then

$$
\rho_{\theta} \tau\left(r e^{i \alpha}\right)=\rho_{\theta}\left(r e^{i \alpha}\right)=r e^{-i \alpha} \cdot e^{i \theta}=r e^{i(\theta-\alpha)} .
$$

In other words, the reflection $\rho_{\theta} \tau$ swaps the positions of the two points

$$
r e^{i \alpha} \leftrightarrow r e^{i(\theta-\alpha)} .
$$

Hence the angle that the mirror line ℓ makes an angle of

$$
\frac{\alpha+(\theta-\alpha)}{2}=\frac{\theta}{2}
$$

with the e_{1}-axis.
Exercise 5.18. Check that the points on the line ℓ are indeed fixed by the reflection $\rho_{\theta} \tau$.
Question 5.19. Let $g=t_{a} \rho_{\alpha} \tau$ be a glide reflection.
(a) What is the angle that the line of reflection makes with the e_{1}-axis?
(b) What is the glide vector v ?

Notice that translations do not affect the angle that the line of reflection makes with the horizontal axis. To answer (a), let $\bar{g}=\rho_{\alpha} \tau$ be the part of g in $O(2)$. (We will talk more about g vs. \bar{g} when we talk about discrete subgroups of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$.) By the previous exercise, we know the line of reflection makes an angle of $\alpha / 2$ with the e_{1}-axis.

To answer (b), we first observe that g^{2} is just a translation, specifically by twice the glide vector, $2 v$. So we first compute g^{2}, using our knowledge of the semi-direct product structures of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ and $O(2)$:

$$
g^{2}=\left(t_{a} \rho_{\alpha} \tau\right)\left(t_{a} \rho_{\alpha} \tau\right)=t_{a}\left(\rho_{\alpha} \tau\right) t_{a}\left(\rho_{\alpha} \tau\right)=t_{a} t_{\rho_{\alpha} \tau(a)}\left(\rho_{\alpha} \tau\right)\left(\rho_{\alpha} \tau\right)=t_{a+\rho_{\alpha} \tau(a)} .
$$

Therefore the glide vector for g is $v=\frac{1}{2}\left(a+\rho_{\alpha} \tau(a)\right)$.
Exercise 5.20. HW07 Prove that a conjugate of a glide reflection in $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ is also a glide reflection, and that the glide vectors have the same length.

5.6 Discrete subgroups of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$

Let $H \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$.

- H contains an arbitrarily small translation if, for any $\varepsilon>0$, there is a translation $t_{v} \in H$ such that $0 \leq|v|<\varepsilon$.
- Similarly, H contains arbitrarily small rotations if, for any $\varepsilon>0$, there is a rotation $\rho_{\theta} \in H$ such that $0 \leq|\theta|<\varepsilon$.

Definition 5.21. A group G of isometries of the plane (i.e. $G \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$) is discrete if it does not contain arbitrarily small translations or rotations.

In other words, G is discrete if there exists a real number ε such that

- if $t_{v} \in G$ and $v \neq 0$ (i.e. $t_{v} \neq \mathrm{id}$), then $|v|>\varepsilon$, and
- if $\rho_{\theta} \in G$, where $\theta \in[-\pi, \pi)$, then $|\theta| \geq \varepsilon$.

Given a discrete group of isometries $G \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$, we will study the following subgroups:

- the translation group $L \leq G$, a subgroup of the group of translations $T \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$
- the point group \bar{G}, a subgroup of the orthogonal group $O(2) \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$.

Exercise 5.22. Explain why, in the setup above, $G \cong L \rtimes \bar{G}$.
The following theorem classifies all possible translation groups:
Theorem 5.23. Every discrete subgroup $L \leq T \cong \mathbb{R}^{2}$ is one of the following:

- the zero group: $L=\{0\}$
- the set of integer multiples of a nonzero vector a : $L=\mathbb{Z} a$
- the set of integer combinations of two linearly independent vectors a and $b: L=\mathbb{Z} a+\mathbb{Z} b$. Groups of this type are called lattices.

The following theorem classifies all possible point groups:
Theorem 5.24 (Crystallographic Restriction). Let Λ be a discrete subgroup of \mathbb{R}^{2}, and let $\operatorname{Sym}(\Lambda) \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$ denote the group of symmetries of Λ.

Let $H \leq O(2) \cap \operatorname{Sym}(\lambda)$, and suppose that $\Lambda \neq\{0\}$. Then

1. every rotation in H has order 1,2,3,4, or 6 , and
2. H is one of the groups C_{n} or D_{n}, where $n \in\{1,2,3,4,6\}$.

Proof. It suffices to prove (a). Let ρ_{θ} be a rotation in H. Let $a \in \Lambda$ be a minimal length translation vector $t_{a} \in \operatorname{Sym}(\Lambda)$. Then $\rho_{\theta} t_{a}=t_{\rho_{\theta}(a)} \in \operatorname{Sym}(\Lambda)$, so $\rho_{\theta}(a) \in \Lambda$. Let $b=\rho(a)-a$:

From the figure, we see that $\|b\|<\|a\|$ if $\theta<\pi / 3$. So by minimality of a, we must have $\theta \geq \pi / 3$. Therefore $\left|\rho_{\theta}\right| \leq 6$.

We can easily construct lattices Λ with symmetries ρ_{θ} of order $1,2,3,4,6$. Try this yourself.
It remains to show that $\theta=2 \pi / 5$ is impossible. Let $\phi=2 \pi / 5$. If $\rho_{\phi} \in H$, then $b=\rho_{\phi}^{2}(a)+a \in \Lambda$ as well. But then b is shorter than a, which again contradicts the minimality of a. Use trigonometric functions to prove this for yourself!

