5.5 Connecting the geometry with the algebra

Question 5.17. Let ℓ be the line of reflection of the isometry $\rho_{\theta}\tau \in O(2)$. What is the the angle the line ℓ makes with the e_1 -axis?

Let's use polar coordinates; we will represent points in the plane as points in the complex plane. Let $re^{i\alpha} \in \mathbb{C}$. Then

$$o_{\theta}\tau(re^{i\alpha}) = \rho_{\theta}(re^{i\alpha}) = re^{-i\alpha} \cdot e^{i\theta} = re^{i(\theta - \alpha)}.$$

In other words, the reflection $\rho_{\theta}\tau$ swaps the positions of the two points

$$re^{i\alpha} \leftrightarrow re^{i(\theta-\alpha)}$$

Hence the angle that the mirror line ℓ makes an angle of

$$\frac{\alpha + (\theta - \alpha)}{2} = \frac{\theta}{2}$$

with the e_1 -axis.

Exercise 5.18. Check that the points on the line ℓ are indeed fixed by the reflection $\rho_{\theta}\tau$.

Question 5.19. Let $g = t_a \rho_{\alpha} \tau$ be a glide reflection.

- (a) What is the angle that the line of reflection makes with the e_1 -axis?
- (b) What is the **glide vector** *v*?

Notice that translations do not affect the angle that the line of reflection makes with the horizontal axis. To answer (a), let $\bar{g} = \rho_{\alpha}\tau$ be the part of g in O(2). (We will talk more about g vs. \bar{g} when we talk about discrete subgroups of Isom(\mathbb{R}^2).) By the previous exercise, we know the line of reflection makes an angle of $\alpha/2$ with the e_1 -axis.

To answer (b), we first observe that g^2 is just a translation, specifically by twice the glide vector, 2v. So we first compute g^2 , using our knowledge of the semi-direct product structures of Isom(\mathbb{R}^2) and O(2):

$$g^{2} = (t_{a}\rho_{\alpha}\tau)(t_{a}\rho_{\alpha}\tau) = t_{a}(\rho_{\alpha}\tau)t_{a}(\rho_{\alpha}\tau) = t_{a}t_{\rho_{\alpha}\tau(a)}(\rho_{\alpha}\tau)(\rho_{\alpha}\tau) = t_{a+\rho_{\alpha}\tau(a)}$$

Therefore the glide vector for g is $v = \frac{1}{2}(a + \rho_{\alpha}\tau(a))$.

Exercise 5.20. HW07 Prove that a conjugate of a glide reflection in $Isom(\mathbb{R}^2)$ is also a glide reflection, and that the glide vectors have the same length.

5.6 Discrete subgroups of $\text{Isom}(\mathbb{R}^2)$

Let $H \leq \text{Isom}(\mathbb{R}^2)$.

- *H* contains an arbitrarily small translation if, for any $\varepsilon > 0$, there is a translation $t_v \in H$ such that $0 \le |v| < \varepsilon$.
- Similarly, *H* contains arbitrarily small rotations if, for any $\varepsilon > 0$, there is a rotation $\rho_{\theta} \in H$ such that $0 \le |\theta| < \varepsilon$.

Definition 5.21. A group *G* of isometries of the plane (i.e. $G \leq \text{Isom}(\mathbb{R}^2)$) is **discrete** if it does not contain arbitrarily small translations or rotations.

In other words, *G* is **discrete** if there exists a real number ε such that

- if $t_v \in G$ and $v \neq 0$ (i.e. $t_v \neq id$), then $|v| > \varepsilon$, and
- if $\rho_{\theta} \in G$, where $\theta \in [-\pi, \pi)$, then $|\theta| \ge \varepsilon$.

Given a discrete group of isometries $G \leq \text{Isom}(\mathbb{R}^2)$, we will study the following subgroups:

- the translation group $L \leq G$, a subgroup of the group of translations $T \leq \text{Isom}(\mathbb{R}^2)$
- the **point group** \overline{G} , a subgroup of the orthogonal group $O(2) \leq \text{Isom}(\mathbb{R}^2)$.

Exercise 5.22. Explain why, in the setup above, $G \cong L \rtimes \overline{G}$.

The following theorem classifies all possible translation groups:

Theorem 5.23. Every discrete subgroup $L \leq T \cong \mathbb{R}^2$ is one of the following:

- the zero group: $L = \{0\}$
- the set of integer multiples of a nonzero vector a: $L = \mathbb{Z}a$
- the set of integer combinations of two linearly independent vectors a and b: $L = \mathbb{Z}a + \mathbb{Z}b$. Groups of this type are called *lattices*.

The following theorem classifies all possible point groups:

Theorem 5.24 (Crystallographic Restriction). Let Λ be a **discrete** subgroup of \mathbb{R}^2 , and let $Sym(\Lambda) \leq Isom(\mathbb{R}^2)$ denote the group of symmetries of Λ .

Let $H \leq O(2) \cap \text{Sym}(\lambda)$, and suppose that $\Lambda \neq \{0\}$. Then

- 1. every rotation in *H* has order 1,2,3,4, or 6, and
- 2. *H* is one of the groups C_n or D_n , where $n \in \{1, 2, 3, 4, 6\}$.

Proof. It suffices to prove (a). Let ρ_{θ} be a rotation in H. Let $a \in \Lambda$ be a *minimal length* translation vector $t_a \in \text{Sym}(\Lambda)$. Then $\rho_{\theta}t_a = t_{\rho_{\theta}(a)} \in \text{Sym}(\Lambda)$, so $\rho_{\theta}(a) \in \Lambda$. Let $b = \rho(a) - a$:

From the figure, we see that ||b|| < ||a|| if $\theta < \pi/3$. So by minimality of *a*, we must have $\theta \ge \pi/3$. Therefore $|\rho_{\theta}| \le 6$.

We can easily construct lattices Λ with symmetries ρ_{θ} of order 1, 2, 3, 4, 6. *Try this yourself.*

It remains to show that $\theta = 2\pi/5$ is *impossible*. Let $\phi = 2\pi/5$. If $\rho_{\phi} \in H$, then $b = \rho_{\phi}^2(a) + a \in \Lambda$ as well. But then *b* is shorter than *a*, which again contradicts the minimality of *a*. Use trigonometric functions to prove this for yourself!