5.5 Connecting the geometry with the algebra

Question 5.17. Let ¢ be the line of reflection of the isometry pg7 € O(2). What is the the angle the line ¢
makes with the e;-axis?

Let’s use polar coordinates; we will represent points in the plane as points in the complex plane.

Letre’® € C. Then ‘ ‘ - 4

poT(1e'®) = py(re’®) = re7i . ¥ = ret0=a),
In other words, the reflection py7 swaps the positions of the two points
re'® s ret0=a),

Hence the angle that the mirror line £ makes an angle of

a+(@—a) 6

2 T2
with the e;-axis.
Exercise 5.18. Check that the points on the line ¢ are indeed fixed by the reflection py7.
Question 5.19. Let g = t,p,7 be a glide reflection.
(a) What is the angle that the line of reflection makes with the e;-axis?

(b) What is the glide vector v?

Notice that translations do not affect the angle that the line of reflection makes with the horizontal axis.
To answer (a), let § = p,7 be the part of g in O(2). (We will talk more about g vs. g when we talk about discrete
subgroups of Isom(RR?).) By the previous exercise, we know the line of reflection makes an angle of o/2 with
the e;-axis.

To answer (b), we first observe that ¢ is just a translation, specifically by twice the glide vector, 2v. So we
first compute g2, using our knowledge of the semi-direct product structures of Isom(R?) and O(2):

92 = (tapaT)(tapaT) = ta(paT)te(paT) = tatpar(a) (PaT)(paT) = Latpar(a)-
Therefore the glide vector for g is v = 1(a + pa7(a)).

Exercise 5.20. HW07 Prove that a conjugate of a glide reflection in Isom(R?) is also a glide reflection, and
that the glide vectors have the same length.

5.6 Discrete subgroups of Isom(R?)
Let H < Isom(R?).

® H contains an arbitrarily small translation if, for any ¢ > 0, there is a translation ¢, € H such that
0<|v|<e.

e Similarly, H contains arbitrarily small rotations if, for any ¢ > 0, there is a rotation py € H such that
0<8] <e.

Definition 5.21. A group G of isometries of the plane (i.e. G < Isom(R?)) is discrete if it does not contain
arbitrarily small translations or rotations.

In other words, G is discrete if there exists a real number ¢ such that
e ift, € Gand v # 0 (i.e. ¢, # id), then |v| > ¢, and
e if pg € G, where § € [—m, ), then |0 > .

Given a discrete group of isometries G < Isom(R?), we will study the following subgroups:
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¢ the translation group L < G, a subgroup of the group of translations 7' < Isom(R?)
* the point group G, a subgroup of the orthogonal group O(2) < Isom(R?).
Exercise 5.22. Explain why, in the setup above, G 2 L x G.
The following theorem classifies all possible translation groups:
Theorem 5.23. Every discrete subgroup L < T = R? is one of the following:
e the zero group: L = {0}
¢ the set of integer multiples of a nonzero vector a: L = Za

¢ the set of integer combinations of two linearly independent vectors a and b: L = Za + Zb. Groups of
this type are called lattices.

The following theorem classifies all possible point groups:

Theorem 5.24 (Crystallographic Restriction). Let A be a discrete subgroup of R?, and let Sym(A) < Isom(R?)
denote the group of symmetries of A.
Let H < O(2) N Sym(A), and suppose that A # {0}. Then

1. every rotation in H has order 1,2,3,4, or 6, and
2. H is one of the groups C,, or D, wheren € {1,2,3,4,6}.
Proof. It suffices to prove (a). Let pg be a rotation in H. Let a € A be a minimal length translation vector

to € Sym(A). Then poto = t,,(4) € Sym(A), so pg(a) € A. Let b = p(a) — a:

po(a

S

0
a

From the figure, we see that ||b|| < ||a| if # < 7/3. So by minimality of a, we must have 6 > 7/3. Therefore
lpe| < 6.

We can easily construct lattices A with symmetries pg of order 1,2, 3, 4, 6. Try this yourself.

It remains to show that § = 27 /5 is impossible. Let ¢ = 27/5. If py, € H, then b = pi(a) +a € Aas well
But then b is shorter than a, which again contradicts the minimality of a. Use trigonometric functions to prove
this for yourself! O
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