5.6 Discrete subgroups of $\text{Isom}(\mathbb{R}^2)$

Let $H \leq \text{Isom}(\mathbb{R}^2)$.

- *H* contains an arbitrarily small translation if, for any $\varepsilon > 0$, there is a translation $t_v \in H$ such that $0 < |v| < \varepsilon$.
- Similarly, *H* contains arbitrarily small rotations if, for any $\varepsilon > 0$, there is a rotation $\rho_{\theta} \in H$ such that $0 < |\theta| < \varepsilon$.

Definition 5.21. A group *G* of isometries of the plane (i.e. $G \leq \text{Isom}(\mathbb{R}^2)$) is **discrete** if it does not contain arbitrarily small translations or rotations.

In other words, *G* is **discrete** if there exists a real number ε such that

- if $t_v \in G$ and $v \neq 0$ (i.e. $t_v \neq id$), then $|v| > \varepsilon$, and
- if $\rho_{\theta} \in G$, where $\theta \in [-\pi, \pi)$, then $|\theta| \ge \varepsilon$.

Given a discrete group of isometries $G \leq \text{Isom}(\mathbb{R}^2)$, we will study the following subgroups:

- the translation group $L \leq G$, a subgroup of the group of translations $T \leq \text{Isom}(\mathbb{R}^2)$
- the **point group** \overline{G} , a subgroup of the orthogonal group $O(2) \leq \text{Isom}(\mathbb{R}^2)$.

Exercise 5.22. Explain why, in the setup above, $G \cong L \rtimes \overline{G}$.

The following theorem classifies all possible translation groups:

Theorem 5.23. Every discrete subgroup $L \leq T \cong \mathbb{R}^2$ is one of the following:

- the zero group: $L = \{0\}$
- the set of integer multiples of a nonzero vector $a: L = \mathbb{Z}a$
- the set of integer combinations of two linearly independent vectors a and b: $L = \mathbb{Z}a + \mathbb{Z}b$. Groups of this type are called *lattices*.

Proof. We will use the following Lemma, which describes some fairly intuitive geometric properties of discrete sets of points/vectors in the plane.

Lemma 5.24. Let *D* be a discrete set of points in the plane, i.e. there is some $\varepsilon > 0$ such that, for all points $p \neq q$ in *D*, $d(p,q) \ge \varepsilon$.

- (A) A bounded region of the plane contains only finitely many points in *D*.
- (B) If $D \neq \{0\}$, then it contains a non-origin point of minimal distance from the origin.

Recall the difference between infimum and minimum from Mat 108.

Remark 5.25. When we say *minimal length* vector in $L \leq \mathbb{R}^2$, we mean a *nonzero* vector of minimal length.

We now work in cases, at times describing the elements of L as points or as vectors, as needed in context.

Case 0: *L* is the trivial subgroup Let *L* be a discrete subgroup *L* of \mathbb{R}^2 . If $L = \{0\}$, then we are done.

Case 1: *L* **lies on a line through the origin** Now suppose *L* is not just the trivial subgroup, and all points lie on a line ℓ . (This line must necessarily go through the origin, which is the identity element in *L*.) Let *a* be a minimal length vector in *L*; we want to show that $L = \mathbb{Z}a$. Suppose by way of contradiction that there is some vector *b* that is not an integer multiple of *a*. Let *ka* be a multiple of *a* that is closest to *b*. Then b - ka is a nonzero vector of length shorter than *a*. This is a contradiction to the minimality of *a*.

Case 2: *L* is none of the above We now use the same idea we used in Case 1, but obtain two "short" vectors that are linearly independent. First let *a* be a minimal length vector. Since *L* does not lie on a line, $L - \mathbb{Z}a$ is nonempty and still discrete, so we can find a vector *b* that is minimal length in $L - \mathbb{Z}$. We want to show that $L = \mathbb{Z}a + \mathbb{Z}b$. Suppose there is some vector $c \in L$ that is not a linear combination of *a* and *b*. Then *c* lies inside a parallelogram whose vertices are the lattice $\mathbb{Z}a + \mathbb{Z}b$. Let ia + jb be a lattice point closest to *c*. Then the vector c - (ia + jb) is shorter than *b*, which contradicts the minimality of *b* in $L - \mathbb{Z}a$. (*Draw a picture!*)