5.6 Discrete subgroups of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$

Let $H \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$.

- H contains an arbitrarily small translation if, for any $\varepsilon>0$, there is a translation $t_{v} \in H$ such that $0<|v|<\varepsilon$.
- Similarly, H contains arbitrarily small rotations if, for any $\varepsilon>0$, there is a rotation $\rho_{\theta} \in H$ such that $0<|\theta|<\varepsilon$.

Definition 5.21. A group G of isometries of the plane (i.e. $G \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$) is discrete if it does not contain arbitrarily small translations or rotations.

In other words, G is discrete if there exists a real number ε such that

- if $t_{v} \in G$ and $v \neq 0$ (i.e. $t_{v} \neq \mathrm{id}$), then $|v|>\varepsilon$, and
- if $\rho_{\theta} \in G$, where $\theta \in[-\pi, \pi)$, then $|\theta| \geq \varepsilon$.

Given a discrete group of isometries $G \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$, we will study the following subgroups:

- the translation group $L \leq G$, a subgroup of the group of translations $T \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$
- the point group \bar{G}, a subgroup of the orthogonal group $O(2) \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$.

Exercise 5.22. Explain why, in the setup above, $G \cong L \rtimes \bar{G}$.
The following theorem classifies all possible translation groups:
Theorem 5.23. Every discrete subgroup $L \leq T \cong \mathbb{R}^{2}$ is one of the following:

- the zero group: $L=\{0\}$
- the set of integer multiples of a nonzero vector $a: L=\mathbb{Z} a$
- the set of integer combinations of two linearly independent vectors a and $b: L=\mathbb{Z} a+\mathbb{Z} b$. Groups of this type are called lattices.

Proof. We will use the following Lemma, which describes some fairly intuitive geometric properties of discrete sets of points/vectors in the plane.
Lemma 5.24. Let D be a discrete set of points in the plane, i.e. there is some $\varepsilon>0$ such that, for all points $p \neq q$ in $D, d(p, q) \geq \varepsilon$.
(A) A bounded region of the plane contains only finitely many points in D.
(B) If $D \neq\{0\}$, then it contains a non-origin point of minimal distance from the origin.

Recall the difference between infimum and minimum from Mat 108.
Remark 5.25. When we say minimal length vector in $L \leq \mathbb{R}^{2}$, we mean a nonzero vector of minimal length.
We now work in cases, at times describing the elements of L as points or as vectors, as needed in context.
Case 0: L is the trivial subgroup Let L be a discrete subgroup L of \mathbb{R}^{2}. If $L=\{0\}$, then we are done.
Case 1: L lies on a line through the origin Now suppose L is not just the trivial subgroup, and all points lie on a line ℓ. (This line must necessarily go through the origin, which is the identity element in L.) Let a be a minimal length vector in L; we want to show that $L=\mathbb{Z} a$. Suppose by way of contradiction that there is some vector b that is not an integer multiple of a. Let $k a$ be a multiple of a that is closest to b. Then $b-k a$ is a nonzero vector of length shorter than a. This is a contradiction to the minimality of a.

Case 2: L is none of the above We now use the same idea we used in Case 1, but obtain two "short" vectors that are linearly independent. First let a be a minimal length vector. Since L does not lie on a line, $L-\mathbb{Z} a$ is nonempty and still discrete, so we can find a vector b that is minimal length in $L-\mathbb{Z}$. We want to show that $L=\mathbb{Z} a+\mathbb{Z} b$. Suppose there is some vector $c \in L$ that is not a linear combination of a and b. Then c lies inside a parallelogram whose vertices are the lattice $\mathbb{Z} a+\mathbb{Z} b$. Let $i a+j b$ be a lattice point closest to c. Then the vector $c-(i a+j b)$ is shorter than b, which contradicts the minimality of b in $L-\mathbb{Z} a$. (Draw a picture!)

