The following proposition basically tells us that if we view $p \in L$ as the result of translating the origin by t_{p}, that if \bar{g} is in the point group, the point $\bar{g}(p)$ will also be a point in the lattice L (i.e. a translation of 0 by something in L).

Proposition 5.26. Let G be a discrete subgroup of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$. Let a be an element of its translation group L, and let \bar{g} be an element of its point group \bar{G}. Then $\bar{g}(a) \in L$.

Proof. To show that $\bar{g}(a) \in L$, we just need to show that $t_{\bar{g}(a)} \in G$. Indeed, we showed previously that $t_{\bar{g}(a)}=g t_{a} g^{-1} \in G$.

It's worth taking some time to really absorb what the above proposition is saying, while looking at a wallpaper pattern. They key to fully understanding the proposition is to make sure you're clear on the separation between isometries of \mathbb{R}^{2} (which are symmetries of the wallpaper) and the points in the plane themselves (which we get from picking a particular point on the wallpaper and moving it around).

With the above proposition, we can now describe point groups of discrete subgroups $G \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$ by studying symmetries of lattices Λ that take the form of a rotation or reflection in $O(2)$.

The following theorem classifies all possible point groups:
Theorem 5.27 (Crystallographic Restriction). Let Λ be a discrete subgroup of \mathbb{R}^{2}, and let $\operatorname{Sym}(\Lambda) \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$ denote the group of symmetries of Λ.

Let $H \leq O(2) \cap \operatorname{Sym}(\lambda)$, and suppose that $\Lambda \neq\{0\}$. Then

1. every rotation in H has order $1,2,3,4$, or 6 , and
2. H is one of the groups C_{n} or D_{n}, where $n \in\{1,2,3,4,6\}$.

Proof. It suffices to prove (a). Let ρ_{θ} be a rotation in H. Let $a \in \Lambda$ be a minimal length translation vector $t_{a} \in \operatorname{Sym}(\Lambda)$. Then $\rho_{\theta} t_{a}=t_{\rho_{\theta}(a)} \in \operatorname{Sym}(\Lambda)$, so $\rho_{\theta}(a) \in \Lambda$. Let $b=\rho(a)-a$:

From the figure, we see that $\|b\|<\|a\|$ if $\theta<\pi / 3$. So by minimality of a, we must have $\theta \geq \pi / 3$. Therefore $\left|\rho_{\theta}\right| \leq 6$.

We can easily construct lattices Λ with symmetries ρ_{θ} of order $1,2,3,4,6$. Try this yourself.
It remains to show that $\theta=2 \pi / 5$ is impossible. Let $\phi=2 \pi / 5$. If $\rho_{\phi} \in H$, then $b=\rho_{\phi}^{2}(a)+a \in \Lambda$ as well. But then b is shorter than a, which again contradicts the minimality of a. Use trigonometric functions to prove this for yourself! $e^{\frac{4 \pi i}{5}} \approx-.81+.59 i$

Exercise 5.28. HW08 Let G denote the group of symmetries of the following infinite wallpaper pattern P constructed from equilateral triangles of side length 1 :

(a) Determine the point group \bar{G} of G, and find the index in G of the subgroup of translations L.
(b) Find translation vectors $a, b \in \mathbb{R}^{2}$ realizing L as the lattice $\mathbb{Z} a+\mathbb{Z} b$.

