The following proposition basically tells us that if we view $p \in L$ as the result of translating the origin by t_p , that if \bar{g} is in the point group, the point $\bar{g}(p)$ will also be a point in the lattice L (i.e. a translation of 0 by something in L).

Proposition 5.26. Let *G* be a discrete subgroup of $\text{Isom}(\mathbb{R}^2)$. Let *a* be an element of its translation group *L*, and let \overline{g} be an element of its point group \overline{G} . Then $\overline{g}(a) \in L$.

Proof. To show that $\bar{g}(a) \in L$, we just need to show that $t_{\bar{g}(a)} \in G$. Indeed, we showed previously that $t_{\bar{g}(a)} = gt_a g^{-1} \in G$.

It's worth taking some time to really absorb what the above proposition is saying, while looking at a wallpaper pattern. They key to fully understanding the proposition is to make sure you're clear on the separation between *isometries* of \mathbb{R}^2 (which are symmetries of the wallpaper) and the points in the plane themselves (which we get from picking a particular point on the wallpaper and moving it around).

With the above proposition, we can now describe point groups of discrete subgroups $G \leq \text{Isom}(\mathbb{R}^2)$ by studying symmetries of lattices Λ that take the form of a rotation or reflection in O(2).

The following theorem classifies all possible point groups:

Theorem 5.27 (Crystallographic Restriction). Let Λ be a **discrete** subgroup of \mathbb{R}^2 , and let $Sym(\Lambda) \leq Isom(\mathbb{R}^2)$ denote the group of symmetries of Λ .

Let $H \leq O(2) \cap \text{Sym}(\lambda)$, and suppose that $\Lambda \neq \{0\}$. Then

- 1. every rotation in *H* has order 1,2,3,4, or 6, and
- 2. *H* is one of the groups C_n or D_n , where $n \in \{1, 2, 3, 4, 6\}$.

Proof. It suffices to prove (a). Let ρ_{θ} be a rotation in H. Let $a \in \Lambda$ be a *minimal length* translation vector $t_a \in \text{Sym}(\Lambda)$. Then $\rho_{\theta}t_a = t_{\rho_{\theta}(a)} \in \text{Sym}(\Lambda)$, so $\rho_{\theta}(a) \in \Lambda$. Let $b = \rho(a) - a$:

From the figure, we see that ||b|| < ||a|| if $\theta < \pi/3$. So by minimality of a, we must have $\theta \ge \pi/3$. Therefore $|\rho_{\theta}| \le 6$.

We can easily construct lattices Λ with symmetries ρ_{θ} of order 1, 2, 3, 4, 6. Try this yourself.

It remains to show that $\theta = 2\pi/5$ is *impossible*. Let $\phi = 2\pi/5$. If $\rho_{\phi} \in H$, then $b = \rho_{\phi}^2(a) + a \in \Lambda$ as well. But then *b* is shorter than *a*, which again contradicts the minimality of *a*. Use trigonometric functions to prove this for yourself! $e^{\frac{4\pi i}{5}} \approx -.81 + .59i$

Exercise 5.28. HW08 Let *G* denote the group of symmetries of the following **infinite** wallpaper pattern *P* constructed from equilateral triangles of side length 1:

- (a) Determine the point group \overline{G} of G, and find the index in G of the subgroup of translations L.
- (b) Find translation vectors $a, b \in \mathbb{R}^2$ realizing *L* as the lattice $\mathbb{Z}a + \mathbb{Z}b$.