6 Group actions

Definition 6.1. A group action (or group operation) is a map $G \times S \rightarrow S$, $(g, s) \mapsto g * s$, where *G* is a group and *S* is a set, satisfying the following axioms:

- (a) 1 * s = s for all $s \in S$
- (b) (associative law) (gg') * s = g * (g' * s) for all $g, g' \in G$ and $s \in S$.

A few remarks:

- We say *G* acts on *S*, and write $G \curvearrowright S$.
- We often omit the * notation and just write gs for g * s. With this notation, the axioms are 1s = s and (gg')s = g(g's).
- For each $g \in G$, we get a map $m_q : S \to S$ given by $s \mapsto gs$.

Example 6.2. Let [n] denote the set of indices $\{1, 2, \dots, n\}$. Then the symmetric group S_n acts on [n].

Here is a more visual example. Let S^2 be the surface of a globe (a *sphere*). We can let $G = S^1, \mathbb{Z}/n\mathbb{Z}$ act on S^2 by rotation about the axis of the globe. Keep this example in mind as we discuss the rest of this section.

Definition 6.3. Let $G \curvearrowright S$, and fix $s \in S$. The **orbit** of *s* is

$$O_s = \{s' \in S \mid s' = gs \text{ for some } g \in G\} = \{gs \mid g \in G\}.$$

- The orbit of *s* is the set of elements in *S* that we can get to by acting on *s* by an element of *g*.
- The orbits for a group action are equivalences for the equivalence relation s ∼ s' if s' = gs for some g ∈ G.
- Thus, the orbits of the action $G \curvearrowright S$ partition the set *S*.
- The group acts independently on each orbit.

Example 6.4. Let $G = \text{Isom}(\mathbb{R}^2)$, and let *S* be the set of triangles in \mathbb{R}^2 . The orbit of a given triangle *T* is the set of all triangles congruent (same angles and same side lengths).

Definition 6.5. Let $G \curvearrowright S$, and fix $s \in S$. The **stabilizer** of *s* is ten set of group elements that leave *s* fixed:

$$G_s = \{g \in G \mid gs = s\}.$$

This is a subgroup of G. Check this yourself!

Example 6.6. Consider the action of D_3 on an equilateral triangle. Stabilizer of a vertex, an edge, and a

perpendicular bisector are all C_2 : \bigtriangleup The stabilizer of the center of the triangle is the rotation subgroup C_3 .

Definition 6.7. Let $G \curvearrowright S$.

- If *S* consists of one orbit, then the action of *G* on *S* is **transitive**.
- If gs = s implies that g = 1, then the action of G on S is free.

Example 6.8. • (not free, not transitive) rotation action of $\mathbb{Z}/3\mathbb{Z}$ on the globe

- (not free, transitive) defining action of $\text{Isom}(\mathbb{R}^2)$ on \mathbb{R}^2
- (free, not transitive) $H = \text{subgroup of } T \leq \text{Isom}(\mathbb{R}^2)$ of horizontal translations

• (free, transitive) action of *G* on *G* by left multiplication: $\mu : G \times G \rightarrow G$

Remark 6.9. Make sure you're very clear about what set your group is acting on.

Exercise 6.10. It's obvious that the action of *G* is transitive on each orbit of the action $G \curvearrowright S$. Why?

Proposition 6.11. Let $G \curvearrowright S$, $s \in S$, and G_s = stabilizer of s.

- (a) If $a, b \in G$, then as = bs iff $a^{-1}b \in G_s$, iff $b \in aG_s$.
- (b) Suppose s' = as. Then $G_{s'}$ is a **conjugate subgroup** to G_s :

$$G_{s'} = aG_s a^{-1} = \{g \in G \mid g = aha^{-1} \text{ for some } h \in G_s\}$$

Proof. (a) Clear: as = bs iff $a^{-1}bs = s$.

(b) Show double inclusion.

 $(G_{s'} \supseteq aG_s a^{-1})$ If $g \in aG_s a^{-1}$, then $g = aha^{-1}$ for some $h \in G_s$. Then $gs' = (aha^{-1})(as) = ahs = as = s'$. $(G_{s'} \subseteq aG_s a^{-1})$ Since $s = a^{-1}s'$, $a^{-1}G_{s'}a \subseteq G_s$ by the same argument.

Exercise 6.12. Let $G = GL_n(\mathbb{R})$ act on the set $V = \mathbb{R}^n$ by left multiplication.

- (a) Describe the decomposition of *V* into orbits for this action.
- (b) What is the stabilizer of e_1 ?
- (c) Is this action of *G* on $V \{0\}$ free, transitive, both, or neither?

Exercise 6.13. Does the rule $P * A = PAP^{\top}$ define an operation of GL_n on $M_{n \times n}$, the set of $n \times n$ matrices? *Here*, P^{\top} *is the transpose of the matrix* $P \in GL_n$.