6 Group actions

Definition 6.1. A group action (or group operation) is a map $G \times S \rightarrow S,(g, s) \mapsto g * s$, where G is a group and S is a set, satisfying the following axioms:
(a) $1 * s=s$ for all $s \in S$
(b) (associative law) $\left(g g^{\prime}\right) * s=g *\left(g^{\prime} * s\right)$ for all $g, g^{\prime} \in G$ and $s \in S$.

A few remarks:

- We say G acts on S, and write $G \curvearrowright S$.
- We often omit the $*$ notation and just write $g s$ for $g * s$. With this notation, the axioms are $1 s=s$ and $\left(g g^{\prime}\right) s=g\left(g^{\prime} s\right)$.
- For each $g \in G$, we get a map $m_{g}: S \rightarrow S$ given by $s \mapsto g s$.

Example 6.2. Let $[n]$ denote the set of indices $\{1,2, \cdots, n\}$. Then the symmetric group S_{n} acts on $[n]$.
Here is a more visual example. Let S^{2} be the surface of a globe (a sphere). We can let $G=S^{1}, \mathbb{Z} / n \mathbb{Z}$ act on S^{2} by rotation about the axis of the globe. Keep this example in mind as we discuss the rest of this section.

Definition 6.3. Let $G \curvearrowright S$, and fix $s \in S$. The orbit of s is

$$
O_{s}=\left\{s^{\prime} \in S \mid s^{\prime}=g s \text { for some } g \in G\right\}=\{g s \mid g \in G\} .
$$

- The orbit of s is the set of elements in S that we can get to by acting on s by an element of g.
- The orbits for a group action are equivalences for the equivalence relation $s \sim s^{\prime}$ if $s^{\prime}=g s$ for some $g \in G$.
- Thus, the orbits of the action $G \curvearrowright S$ partition the set S.
- The group acts independently on each orbit.

Example 6.4. Let $G=\operatorname{Isom}\left(\mathbb{R}^{2}\right)$, and let S be the set of triangles in \mathbb{R}^{2}. The orbit of a given triangle T is the set of all triangles congruent (same angles and same side lengths).

Definition 6.5. Let $G \curvearrowright S$, and fix $s \in S$. The stabilizer of s is teh set of group elements that leave s fixed:

$$
G_{s}=\{g \in G \mid g s=s\} .
$$

This is a subgroup of G. Check this yourself!
Example 6.6. Consider the action of D_{3} on an equilateral triangle. Stabilizer of a vertex, an edge, and a perpendicular bisector are all C_{2} :
 The stabilizer of the center of the triangle is the rotation subgroup C_{3}.

Definition 6.7. Let $G \curvearrowright S$.

- If S consists of one orbit, then the action of G on S is transitive.
- If $g s=s$ implies that $g=1$, then the action of G on S is free.

Example 6.8. - (not free, not transitive) rotation action of $\mathbb{Z} / 3 \mathbb{Z}$ on the globe

- (not free, transitive) defining action of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ on \mathbb{R}^{2}
- (free, not transitive) $H=$ subgroup of $T \leq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$ of horizontal translations
- (free, transitive) action of G on G by left multiplication: $\mu: G \times G \rightarrow G$

Remark 6.9. Make sure you're very clear about what set your group is acting on.
Exercise 6.10. It's obvious that the action of G is transitive on each orbit of the action $G \curvearrowright S$. Why?
Proposition 6.11. Let $G \curvearrowright S, s \in S$, and $G_{s}=$ stabilizer of s.
(a) If $a, b \in G$, then $a s=b s$ iff $a^{-1} b \in G_{s}$, iff $b \in a G_{s}$.
(b) Suppose $s^{\prime}=a s$. Then $G_{s^{\prime}}$ is a conjugate subgroup to G_{s} :

$$
G_{s^{\prime}}=a G_{s} a^{-1}=\left\{g \in G \mid g=a h a^{-1} \text { for some } h \in G_{s}\right\}
$$

Proof. (a) Clear: $a s=b s$ iff $a^{-1} b s=s$.
(b) Show double inclusion.
$\left(G_{s^{\prime}} \supseteq a G_{s} a^{-1}\right)$ If $g \in a G_{s} a^{-1}$, then $g=a h a^{-1}$ for some $h \in G_{s}$. Then $g s^{\prime}=\left(a h a^{-1}\right)(a s)=a h s=$ $a s=s^{\prime}$.
$\left(G_{s^{\prime}} \subseteq a G_{s} a^{-1}\right)$ Since $s=a^{-1} s^{\prime}, a^{-1} G_{s^{\prime}} a \subseteq G_{s}$ by the same argument.

Exercise 6.12. Let $G=G L_{n}(\mathbb{R})$ act on the set $V=\mathbb{R}^{n}$ by left multiplication.
(a) Describe the decomposition of V into orbits for this action.
(b) What is the stabilizer of e_{1} ?
(c) Is this action of G on $V-\{0\}$ free, transitive, both, or neither?

Exercise 6.13. Does the rule $P * A=P A P^{\top}$ define an operation of $G L_{n}$ on $M_{n \times n}$, the set of $n \times n$ matrices? Here, P^{\top} is the transpose of the matrix $P \in G L_{n}$.

