
• (free, transitive) action of G on G by left multiplication: µ : G×G→ G

Remark 6.9. Make sure you’re very clear about what set your group is acting on.

Exercise 6.10. It’s obvious that the action of G is transitive on each orbit of the action G↷ S. Why?

Exercise 6.11. Suppose a group G acts freely on a set S (i.e. the group action G↷ S is free). Prove that for
any s ∈ S, the stabilizer Gs is the trivial subgroup of G.

Proposition 6.12. Let G↷ S, s ∈ S, and Gs = stabilizer of s.

(a) If a, b ∈ G, then as = bs iff a−1b ∈ Gs, iff b ∈ aGs.

(b) Suppose s′ = as. Then Gs′ is a conjugate subgroup to Gs:

Gs′ = aGsa
−1 = {g ∈ G | g = aha−1 for some h ∈ Gs}

Proof. (a) Clear: as = bs iff a−1bs = s.

(b) Show double inclusion.

(Gs′ ⊇ aGsa
−1) If g ∈ aGsa

−1, then g = aha−1 for some h ∈ Gs. Then gs′ = (aha−1)(as) = ahs =
as = s′.

(Gs′ ⊆ aGsa
−1) Since s = a−1s′, a−1Gs′a ⊆ Gs by the same argument.

Exercise 6.13. HW09 Does the rule P ∗ A = PAP⊤ define an operation of GLn on Mn×n, the set of n × n
matrices? Here, P⊤ is the transpose of the matrix P ∈ GLn.

Exercise 6.14. HW09 Let G = GLn(R) act on the set V = Rn by left multiplication.

(a) Describe the decomposition of V into orbits for this action.

(b) What is the stabilizer of e1?

(c) Is this action of G on V − {0} free, transitive, both, or neither?

6.1 The action of G on cosets of H ≤ G

Let H be a subgroup of G (not necessarily normal). Then G acts on the set of left cosets G/H of H in a
natural way, i.e. in an obvious or canonical way:

g ∗ [aH] = [gaH].

Observe that

• This action is transitive. Why?

• The stabilizer of the coset [H] is the subgroup H . Why?

Example 6.15. Let G = D3 = {1, ρ, ρ2, τ, ρτ, ρ2τ}, and let H = ⟨τ⟩ = {1, τ}.
The left cosets of H are

H = {1, τ} ρH = {ρ, ρτ} ρ2H = {ρ2, ρ2τ}

To understand how G acts on G/H , we just need to know how the generators ρ and τ act on G/H .
(Why?)

• ρ∗ sends H 7→ ρH 7→ ρ2H 7→ H

• τ∗ sends H 7→ H , ρH ↔ ρ2H

In other words, if we label the three cosets H, ρH, ρ2H as C1, C2, C3 respectively, then the action of ρ is
(1 2 3) on the indices, and the action of τ is (2 3) on the indices.
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6.2 Orbit-stabilizer theorem

Proposition 6.16. Suppose a group G acts on a set S. Let s ∈ S. Let Gs denote the stabilizer of s, and let Os

denote the orbit of s.
There is a bijective map (of sets!)

ε : G/Gs → Os

[aGs] 7→ as

that respects the action of G on both sides, i.e.

ε(g[C]) = gε([C])

for every coset C and every element g ∈ G. (We say that the map ε is G-equivariant.)

Proof. For the purposes of this proof, we let H = Gs.
First, we need to show that ε is well-defined. Suppose aH = bH ; we need to show that as = bs. Since

a ∈ bH , there is some h ∈ H such that a = bh. Since h ∈ H = Gs fixes s, as = bhs = bs.
Second, we show that ε is injective. If ε(aH) = ε(bH), then as = bs, so b−1as = b−1bs = 1s = s. Then

b−1a ∈ H , so aH = bH indeed.
Third, we show that ε is surjective. If s′ ∈ Os, then there is some g ∈ G such that s′ = gs. Then

ε(gH) = gs = s′.
Finally, we need to check that ε is G-equivariant. Let g ∈ G, and let [aH] ∈ G/H . Then

ε(g[aH]) = ε([gaH]) = gas = g(as) = gε([aH]).

Exercise 6.17. Exhibit the bijective map ε from the orbit-stabilizer theorem explicitly, for the case where G
is the dihedral group D4 and S is the set of vertices of a square.

The Orbit-Stabilizer Theorem is very often used to count things. Recall that the Counting Formula tells
us

|G| = |H||G/H|.

In terms of group actions, we have yet another version of the counting formula.

Observation 6.18 (Counting Formula). Let S be a finite set on which G acts. Let s ∈ S. By the Orbit-
Stabilizer Theorem,

|G| = |Gs||Os|.

Here is an example that illustrates we can use this formula to determine the size of a symmetry group.
Consider a cube:

Question 6.19. How big is the set of orientation-preserving symmetries of the cube?

First, a couple of remarks:
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1. To rephrase this in terms of abstract algebra, we first note that the set of symmetries is actually a
group. So, we can rephrase this question as follows. Let G be the group of orientation-preserving
symmetries of the cube. What is |G|, the order of the group G?

2. This the 3D analogue to the symmetries of plane figures, such as a square. The symmetries must be
isometries of R3.

3. Orientation-preserving means that you can’t reflect the cube through a plane; we really want to only
consider symmetries that you can physically perform on a real-life cube, such as a die.

4. If we’re looking at a solid object in real life (i.e. not an infinite 3D object), then the group of orientation-
preserving symmetries consists only of rotations. So, the book will call these rotational symmetries

In order to answer this, one could try to count all the symmetries. Or, one could focus on, say, the set of
faces. That is, there is clearly a natural action of G on the set of 6 faces of a cube. Let f be a particular face.
The only actions I can perform that preserve a given face are the four rotations about the line normal to that
face. Therefore |Gf | = 4. The orbit of f is all six faces of the cube, so |Of | = 6. Then by the Orbit-Stabilizer
Theorem and Counting Formula, we know |G| = 24.

Exercise 6.20. Let G be the set of rotational symmetries of a regular dodecahedron. This is a solid with 12
faces that are all regular pentagons. What is |G|?

We can also use algebra to figure out the size of a set that a group acts on, by using the following
observation.

Observation 6.21 (Decomposition of S into orbits). Let S be a finite set on whichG acts, and letO1, O2, . . . , Ok

be the set of orbits. Then
|S| = |O1|+ |O2|+ · · ·+ |Ok|.

This observation will become more important later when we study conjugacy classes of groups.
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