6.2 Orbit-stabilizer theorem

Proposition 6.17. Suppose a group G acts on a set S. Let $s \in S$. Let G_{s} denote the stabilizer of s, and let O_{s} denote the orbit of s.

There is a bijective map (of sets!)

$$
\begin{gathered}
\varepsilon: G / G_{s} \rightarrow O_{s} \\
{\left[a G_{s}\right] \mapsto a s}
\end{gathered}
$$

that respects the action of G on both sides, i.e.

$$
\varepsilon(g[C])=g \varepsilon([C])
$$

for every $\operatorname{coset} C$ and every element $g \in G$. (We say that the map ε is G-equivariant.)
Proof. For the purposes of this proof, we let $H=G_{s}$.
First, we need to show that ε is well-defined. Suppose $a H=b H$; we need to show that $a s=b s$. Since $a \in b H$, there is some $h \in H$ such that $a=b h$. Since $h \in H=G_{s}$ fixes $s, a s=b h s=b s$.

Second, we show that ε is injective. If $\varepsilon(a H)=\varepsilon(b H)$, then $a s=b s$, so $b^{-1} a s=b^{-1} b s=1 s=s$. Then $b^{-1} a \in H$, so $a H=b H$ indeed.

Third, we show that ε is surjective. If $s^{\prime} \in O_{s}$, then there is some $g \in G$ such that $s^{\prime}=g s$. Then $\varepsilon(g H)=g s=s^{\prime}$.

Finally, we need to check that ε is G-equivariant. Let $g \in G$, and let $[a H] \in G / H$. Then

$$
\varepsilon(g[a H])=\varepsilon([g a H])=g a s=g(a s)=g \varepsilon([a H])
$$

Example 6.18. Here are some examples illustrating the Orbit-Stabilizer Theorem for transitive actions.

1. Consider the action of D_{5} on the vertices V of a regular pentagon. Let $v \in V$ and let H be the stabilizer of v. Then thre is a bijection

$$
\varepsilon: D_{5} / H \rightarrow V
$$

since the orbit of v is all of V.
2. Consider $\operatorname{Isom}\left(\mathbb{R}^{2}\right) \curvearrowright \mathbb{R}^{2}$. The stabilizer of the origin is O_{2}. The orbit of the origin is the entire plane. So there is a bijection between $T \cong \operatorname{Isom}\left(\mathbb{R}^{2}\right) / O(2)$ and \mathbb{R}^{2}. (Recall that T was the normal subgroup of translations.)
3. Let \mathcal{L} denote the set of all lines in \mathbb{R}^{2}. There is an induced action by $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$. For $L \in \mathcal{L}$, let H_{L} denote the stabilizer of L. Then $\operatorname{Isom}\left(\mathbb{R}^{2}\right) / H_{L} \leftrightarrow \mathcal{L}$.

Exercise 6.19. On the other hand, consider the non-transitive action of $H=\langle\tau\rangle \leq D_{5}$ on the vertices V of a pentagon. There are three orbits. Exhibit the bijective map ε for all three of these orbits.
Exercise 6.20. Exhibit the bijective map ε from the orbit-stabilizer theorem explicitly, for the case where G is the dihedral group D_{4} and S is the set of vertices of a square.

The Orbit-Stabilizer Theorem is very often used to count things. Recall that the Counting Formula tells us

$$
|G|=|H||G / H|
$$

In terms of group actions, we have yet another version of the counting formula.
Observation 6.21 (Counting Formula). Let S be a finite set on which G acts. Let $s \in S$. By the OrbitStabilizer Theorem,

$$
|G|=\left|G_{s}\right|\left|O_{s}\right| .
$$

Here is an example that illustrates we can use this formula to determine the size of a symmetry group. Consider a cube:

Question 6.22. How big is the set of orientation-preserving symmetries of the cube?
First, a couple of remarks:

1. To rephrase this in terms of abstract algebra, we first note that the set of symmetries is actually a group. So, we can rephrase this question as follows. Let G be the group of orientation-preserving symmetries of the cube. What is $|G|$, the order of the group G ?
2. This the 3D analogue to the symmetries of plane figures, such as a square. The symmetries must be isometries of \mathbb{R}^{3}.
3. Orientation-preserving means that you can't reflect the cube through a plane; we really want to only consider symmetries that you can physically perform on a real-life cube, such as a die.
4. If we're looking at a solid object in real life (i.e not an infinite 3D object), then the group of orientationpreserving symmetries consists only of rotations. So, the book will call these rotational symmetries

In order to answer this, one could try to count all the symmetries. Or, one could focus on, say, the set of faces. That is, there is clearly a natural action of G on the set of 6 faces of a cube. Let f be a particular face. The only actions I can perform that preserve a given face are the four rotations about the line normal to that face. Therefore $\left|G_{f}\right|=4$. The orbit of f is all six faces of the cube, so $\left|O_{f}\right|=6$. Then by the Orbit-Stabilizer Theorem and Counting Formula, we know $|G|=24$.

Exercise 6.23. Let G be the set of rotational symmetries of a regular dodecahedron. This is a solid with 12 faces that are all regular pentagons. What is $|G|$?

We can also use algebra to figure out the size of a set that a group acts on, by using the following observation.

Observation 6.24 (Decomposition of S into orbits). Let S be a finite set on which G acts, and let $O_{1}, O_{2}, \ldots, O_{k}$ be the set of orbits. Then

$$
|S|=\left|O_{1}\right|+\left|O_{2}\right|+\cdots+\left|O_{k}\right|
$$

More interestingly, by the Counting Formula, for each $i=1,2, \ldots, k$, we know that $\left|O_{i}\right|$ must divide $|G|$.
This observation is also very useful in many contexts. We'll see this again when we talk about conjugacy classes in groups later on.
Example 6.25. Let G be the set of rotational symmetries of a tetrahedron T. (We are only looking at orientation-preserving rigid motions.) Let V, E, F be the set of vertices, edges, and faces, respectively. Observe that $|V|=6,|E|=4$, and $|F|=6$.

Pick a vertex v and consider the stabilizer G_{v}. We can restrict the action $G \curvearrowright T$ to an action $G \curvearrowright V$, because we observe that any symmetry of T will necessarily take a vertex to another vertex.

Using geometric reasoning, we see that $G_{v} \cong \mathbb{Z} / 3 \mathbb{Z}$ is generated by rotation about the axis going through the vertex v that is normal to the face opposite to v. The action $G_{v} \curvearrowright V$ has two orbits: v is fixed by G_{v}, so it's in an orbit on its own; the other three vertices are taken to each other under the action, so they form an orbit. We summarize this by the equation

$$
|V|=4=1+3
$$

Similarly, any symmetry of T must take an edge to an edge, so we get an induced action $G_{v} \curvearrowright E$. View T with v at the top of the pyramid with a flat base. The three sloped edges form an orbit, and the three flat edges form another orbit. The orbit decomposition of the set of edges can be summarized as

$$
|E|=6=3+3
$$

Exercise 6.26. A cube is a 3D solid with 6 square faces of equal size:

One example of the cube is the set of points $Q=[0,1]^{3} \subset \mathbb{R}^{3}$.
Let G be the group of rotational symmetries of the cube. This is a subgroup of $O(3)$ consisting of orientation-preserving symmetries of the cube. ${ }^{9}$

Let V, E, and F denote the sets of vertices, edges, and faces of the cube, respectively. Check for yourself that the size of these sets are

$$
|V|=8 \quad|E|=12 \quad|F|=6
$$

(a) Use the counting formula to determine the order of G.
(b) Let G_{v}, G_{e}, G_{f} be the stabilizers of a vertex v, and edge e, and a face f of the cube. Determine the formulas of the form

$$
|S|=\left|O_{1}\right|+\left|O_{2}\right|+\cdots+\left|O_{k}\right|
$$

(formula 6.9.4 in the text) that represent the decomposition of each of the three sets V, E, F into orbits for each of the subgroups. Your solution should contain $9=3 \times 3$ formulas, one for each (group, set) pair. First make sure you are clear on what the group and set in the group action is, in each case!

We've already talked a bunch about actions induced by other actions. Here are two more ways to get induced actions: we can take a subgroup the acting group, or modify the set being acted on.

1. Let $G \curvearrowright S$, and let U be a subset of S. The stabilizer of the subset $U \subset S$ is the set H of elements where $g U=U$. Check that H is indeed a subgroup.

- Observe that then we get an induced action of H on U.
- We also get an action of G on the orbit of U in the set of subsets of S. (See example below.)

2. Let $G \curvearrowright S$, and let $H \leq G$. Then $H \curvearrowright S$.

Example 6.27. Let G be the group of rotational symmetries of the cube. We already computed that there are 24 such symmetries, by considering the action of G on F, the set of 6 faces. From $G \curvearrowright F$, we also get an action of G on pairs of faces. There are $\binom{6}{2}$ unordered pairs of faces.

[^0]
[^0]: ${ }^{9}$ The group of orientation-preserving isometries of \mathbb{R}^{3} is called $S O(3)$.

