
6.3 Action of G ↷ G by left multiplication

Recall that we can define an action of G on S = G itself by left multiplication:

µ : G×G→ G

(g, x) 7→ gx.

In other words, we are putting group multiplication into the framework of a group action.
This action is both transitive and free:

• (Transitive) It suffices to show that there is just one orbit, so we will show that every g ∈ G is in the
orbit of the identity. Indeed, µ(g, 1) = g · 1 = g.

• (Free) If gx = x, then by cancellation we have g = 1.

Observation 6.28. For any group action G↷ S, we can view the map

G× S → S

(g, s) 7→ g ∗ s

satisfying the identity and associativity axioms equivalently as a map

G→ Perm(S)

g 7→ [g∗ : S → S]

where Perm(S) is the group of permutations of the elements of S. (For example, Perm({1, 2, . . . , n})Sn; this
is the more general construction.)

We can view the action G↷ G by left multiplication as a map

G→ Perm(G)

g 7→ mg

where mg is “multiply by g on the left”, i.e. mg(h) = gh.

• This map is an injective group homomorphism: mg(x) = x for all x ∈ G iff g = 1. In other words,
this action is faithful. But we already knew this, since we showed that the action was in fact free. See
Remark 6.8.

Using this action, can prove that every finite group lives inside a symmetric group Sn; this is another
reason why it’s so important to understand symmetric groups.

Theorem 6.29 (Cayley’s Theorem). Every finite group G is isomorphic to a subgroup of some symmetric
group Sn.

Proof. Let n = |G|. Then Perm(G) ∼= Sn. The homomorphism φ : G → Perm(G) ∼= Sn is injective, so
G ∼= img(φ).

Note that it’s an entirely different question to ask for the smallest n such that G ↪→ Sn.

6.4 Action of G ↷ G by conjugation

We can define a different action of G on itself by conjugation; this will tell us more about the structure of
the group.

The action of G on itself by conjugation is given by (g, x) 7→ gxg−1. In this section, we will write
g ∗ x := gxg−1 to emphasize the action.
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Definition 6.30. Let x ∈ G. The centralizer of x, denoted Z(x), is the stabilizer of x under the conjugation
action G↷ G:

Z(x) = {g ∈ G | gxg−1 = x}.

These are precisely the elements of G that commute with x.

Exercise 6.31. Prove that Z(G) is a subgroup of G.

Remark 6.32. Recall that the center Z(G) of a group G is the set of elements that commute with all x ∈ G.
Therefore Z(G) =

⋂
x∈G Z(x).

If G is abelian, then for all x ∈ G, Z(x) = G. (And Z(G) = G.)

Definition 6.33. The conjugacy class of x ∈ G is the orbit of x under the conjugation action of G↷ G.

We will write C(x) for the conjugacy class of x, though I don’t believe there is standard notation for this.
Here are some immediate observations:

• The Counting Formula tells us that

|G| = |Gx||Ox| = |Z(x)||C(x)|

• For any x ∈ G, ⟨x⟩ ⊆ Z(x).

• Z(G) ≤ Z(x)

• An element x ∈ G is in Z(G) iff Z(x) = G iff C(x) = {x}. Think through this.

Definition 6.34. For a finite group G, the class equation of G is the equation describing how the group G
is decomposed into conjugacy classes:

|G| =
∑

conj. classes C

|C| = |C1|+ |C2|+ . . .+ |Ck|.

By convention, we let C1 = C(1) = {1} (the conjugacy class of the identity element).

Some more quick observations:

• For all x ∈ Z(G), C(x) = {x}, so there will be |Z(G)| ones in the class equation for G.

• For every conjugacy class Ci, by the counting formula we know |Ci|
∣∣ |G|.

Example 6.35. The class equation of S3
∼= D3 is 6 = 1 + 2 + 3, because

S3 = {1} ∪ {(123), (132)} ∪ {(12), (23), (13)}.

Observe that since A3 is a normal subgroup of S3, it must be a union of conjugacy classes. Indeed, A3 is the
union of the first two conjugacy classes shown above.

Exercise 6.36. Determine the class equation of D4 = ⟨ρ, τ | ρ4 = τ2 = ρτρτ = 1⟩. Solution: Instead of
directly computing conjugacy classes, you can instead compute the size of centralizers; this way, you can
use the counting formula to know when you’ve found all the elements in the conjugacy class. For example,
consider ρ. We know ρ ̸∈ Z(D4) since τρτ = ρ−1 (i.e. ρ−1 is in the conjugacy class of ρ). Then Z(ρ) = ⟨ρ⟩,
which contains 4 elements. So |C(ρ) = 2. This means we’ve already found the entire conjugacy class of ρ:
C(ρ) = {ρ, ρ−1}. There are many different ways to arrive at the final answer, which is that 8 = 1+1+2+2+2.
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