6.3 Action of $G \curvearrowright G$ by left multiplication

Recall that we can define an action of G on S = G itself by left multiplication:

$$\mu: G \times G \to G$$
$$(g, x) \mapsto gx.$$

In other words, we are putting group multiplication into the framework of a group action. This action is both transitive and free:

- (Transitive) It suffices to show that there is just one orbit, so we will show that every $g \in G$ is in the orbit of the identity. Indeed, $\mu(g, 1) = g \cdot 1 = g$.
- (Free) If gx = x, then by cancellation we have g = 1.

Observation 6.28. For any group action $G \curvearrowright S$, we can view the map

$$\begin{array}{l} G\times S\to S\\ (g,s)\mapsto g*s \end{array}$$

satisfying the identity and associativity axioms equivalently as a map

$$G \to \operatorname{Perm}(S)$$
$$g \mapsto [g^* : S \to S]$$

where Perm(S) is the group of permutations of the elements of *S*. (For example, $Perm(\{1, 2, ..., n\})S_n$; this is the more general construction.)

We can view the action $G \curvearrowright G$ by left multiplication as a map

$$G \to \operatorname{Perm}(G)$$

 $g \mapsto m_g$

where m_q is "multiply by g on the left", i.e. $m_q(h) = gh$.

• This map is an injective group homomorphism: $m_g(x) = x$ for all $x \in G$ iff g = 1. In other words, this action is *faithful*. But we already knew this, since we showed that the action was in fact *free*. See Remark 6.8.

Using this action, can prove that every finite group lives inside a symmetric group S_n ; this is another reason why it's so important to understand symmetric groups.

Theorem 6.29 (Cayley's Theorem). Every finite group G is isomorphic to a subgroup of some symmetric group S_n .

Proof. Let n = |G|. Then $Perm(G) \cong S_n$. The homomorphism $\varphi : G \to Perm(G) \cong S_n$ is injective, so $G \cong img(\varphi)$.

Note that it's an entirely different question to ask for the *smallest* n such that $G \hookrightarrow S_n$.

6.4 Action of $G \curvearrowright G$ by conjugation

We can define a different action of G on itself by conjugation; this will tell us more about the structure of the group.

The action of *G* on itself by conjugation is given by $(g, x) \mapsto gxg^{-1}$. In this section, we will write $g * x := gxg^{-1}$ to emphasize the action.

Definition 6.30. Let $x \in G$. The **centralizer** of x, denoted Z(x), is the stabilizer of x under the conjugation action $G \curvearrowright G$:

$$Z(x) = \{ g \in G \mid gxg^{-1} = x \}.$$

These are precisely the elements of G that commute with x.

Exercise 6.31. Prove that Z(G) is a subgroup of G.

Remark 6.32. Recall that the **center** Z(G) of a group G is the set of elements that commute with all $x \in G$. Therefore $Z(G) = \bigcap_{x \in G} Z(x)$.

If *G* is abelian, then for all $x \in G$, Z(x) = G. (And Z(G) = G.)

Definition 6.33. The **conjugacy class** of $x \in G$ is the orbit of x under the conjugation action of $G \curvearrowright G$.

We will write C(x) for the conjugacy class of x, though I don't believe there is standard notation for this. Here are some immediate observations:

• The Counting Formula tells us that

$$|G| = |G_x||O_x| = |Z(x)||C(x)|$$

- For any $x \in G$, $\langle x \rangle \subseteq Z(x)$.
- $Z(G) \le Z(x)$
- An element $x \in G$ is in Z(G) iff Z(x) = G iff $C(x) = \{x\}$. Think through this.

Definition 6.34. For a finite group *G*, the **class equation of** *G* is the equation describing how the group *G* is decomposed into conjugacy classes:

$$|G| = \sum_{\text{conj. classes } C} |C| = |C_1| + |C_2| + \ldots + |C_k|.$$

By convention, we let $C_1 = C(1) = \{1\}$ (the conjugacy class of the identity element).

Some more quick observations:

- For all $x \in Z(G)$, $C(x) = \{x\}$, so there will be |Z(G)| ones in the class equation for G.
- For every conjugacy class C_i , by the counting formula we know $|C_i| \mid |G|$.

Example 6.35. The class equation of $S_3 \cong D_3$ is 6 = 1 + 2 + 3, because

$$S_3 = \{1\} \cup \{(123), (132)\} \cup \{(12), (23), (13)\}.$$

Observe that since A_3 is a *normal* subgroup of S_3 , it must be a union of conjugacy classes. Indeed, A_3 is the union of the first two conjugacy classes shown above.

Exercise 6.36. Determine the class equation of $D_4 = \langle \rho, \tau | \rho^4 = \tau^2 = \rho \tau \rho \tau = 1 \rangle$. Solution: Instead of directly computing conjugacy classes, you can instead compute the size of centralizers; this way, you can use the counting formula to know when you've found all the elements in the conjugacy class. For example, consider ρ . We know $\rho \notin Z(D_4)$ since $\tau \rho \tau = \rho^{-1}$ (i.e. ρ^{-1} is in the conjugacy class of ρ). Then $Z(\rho) = \langle \rho \rangle$, which contains 4 elements. So $|C(\rho) = 2$. This means we've already found the entire conjugacy class of ρ : $C(\rho) = \{\rho, \rho^{-1}\}$. There are many different ways to arrive at the final answer, which is that 8 = 1+1+2+2+2.