6.3 Action of $G \curvearrowright G$ by left multiplication

Recall that we can define an action of G on $S=G$ itself by left multiplication:

$$
\begin{aligned}
\mu: G \times G & \rightarrow G \\
(g, x) & \mapsto g x .
\end{aligned}
$$

In other words, we are putting group multiplication into the framework of a group action.
This action is both transitive and free:

- (Transitive) It suffices to show that there is just one orbit, so we will show that every $g \in G$ is in the orbit of the identity. Indeed, $\mu(g, 1)=g \cdot 1=g$.
- (Free) If $g x=x$, then by cancellation we have $g=1$.

Observation 6.28. For any group action $G \curvearrowright S$, we can view the map

$$
\begin{aligned}
G \times S & \rightarrow S \\
(g, s) & \mapsto g * s
\end{aligned}
$$

satisfying the identity and associativity axioms equivalently as a map

$$
\begin{aligned}
G & \rightarrow \operatorname{Perm}(S) \\
g & \mapsto[g *: S \rightarrow S]
\end{aligned}
$$

where $\operatorname{Perm}(S)$ is the group of permutations of the elements of S. (For example, $\operatorname{Perm}(\{1,2, \ldots, n\}) S_{n}$; this is the more general construction.)

We can view the action $G \curvearrowright G$ by left multiplication as a map

$$
\begin{aligned}
G & \rightarrow \operatorname{Perm}(G) \\
g & \mapsto m_{g}
\end{aligned}
$$

where m_{g} is "multiply by g on the left", i.e. $m_{g}(h)=g h$.

- This map is an injective group homomorphism: $m_{g}(x)=x$ for all $x \in G$ iff $g=1$. In other words, this action is faithful. But we already knew this, since we showed that the action was in fact free. See Remark 6.8.

Using this action, can prove that every finite group lives inside a symmetric group S_{n}; this is another reason why it's so important to understand symmetric groups.

Theorem 6.29 (Cayley's Theorem). Every finite group G is isomorphic to a subgroup of some symmetric group S_{n}.

Proof. Let $n=|G|$. Then $\operatorname{Perm}(G) \cong S_{n}$. The homomorphism $\varphi: G \rightarrow \operatorname{Perm}(G) \cong S_{n}$ is injective, so $G \cong \operatorname{img}(\varphi)$.

Note that it's an entirely different question to ask for the smallest n such that $G \hookrightarrow S_{n}$.

6.4 Action of $G \curvearrowright G$ by conjugation

We can define a different action of G on itself by conjugation; this will tell us more about the structure of the group.

The action of G on itself by conjugation is given by $(g, x) \mapsto g x g^{-1}$. In this section, we will write $g * x:=g x g^{-1}$ to emphasize the action.

Definition 6.30. Let $x \in G$. The centralizer of x, denoted $Z(x)$, is the stabilizer of x under the conjugation action $G \curvearrowright G$:

$$
Z(x)=\left\{g \in G \mid g x g^{-1}=x\right\} .
$$

These are precisely the elements of G that commute with x.
Exercise 6.31. Prove that $Z(G)$ is a subgroup of G.
Remark 6.32. Recall that the center $Z(G)$ of a group G is the set of elements that commute with all $x \in G$. Therefore $Z(G)=\bigcap_{x \in G} Z(x)$.

If G is abelian, then for all $x \in G, Z(x)=G$. (And $Z(G)=G$.)
Definition 6.33. The conjugacy class of $x \in G$ is the orbit of x under the conjugation action of $G \curvearrowright G$.
We will write $C(x)$ for the conjugacy class of x, though I don't believe there is standard notation for this. Here are some immediate observations:

- The Counting Formula tells us that

$$
|G|=\left|G_{x}\right|\left|O_{x}\right|=|Z(x)||C(x)|
$$

- For any $x \in G,\langle x\rangle \subseteq Z(x)$.
- $Z(G) \leq Z(x)$
- An element $x \in G$ is in $Z(G)$ iff $Z(x)=G$ iff $C(x)=\{x\}$. Think through this.

Definition 6.34. For a finite group G, the class equation of G is the equation describing how the group G is decomposed into conjugacy classes:

$$
|G|=\sum_{\text {conj. classes } C}|C|=\left|C_{1}\right|+\left|C_{2}\right|+\ldots+\left|C_{k}\right| .
$$

By convention, we let $C_{1}=C(1)=\{1\}$ (the conjugacy class of the identity element).
Some more quick observations:

- For all $x \in Z(G), C(x)=\{x\}$, so there will be $|Z(G)|$ ones in the class equation for G.
- For every conjugacy class C_{i}, by the counting formula we know $\left|C_{i}\right|||G|$.

Example 6.35. The class equation of $S_{3} \cong D_{3}$ is $6=1+2+3$, because

$$
S_{3}=\{1\} \cup\{(123),(132)\} \cup\{(12),(23),(13)\} .
$$

Observe that since A_{3} is a normal subgroup of S_{3}, it must be a union of conjugacy classes. Indeed, A_{3} is the union of the first two conjugacy classes shown above.

Exercise 6.36. Determine the class equation of $D_{4}=\left\langle\rho, \tau \mid \rho^{4}=\tau^{2}=\rho \tau \rho \tau=1\right\rangle$. Solution: Instead of directly computing conjugacy classes, you can instead compute the size of centralizers; this way, you can use the counting formula to know when you've found all the elements in the conjugacy class. For example, consider ρ. We know $\rho \notin Z\left(D_{4}\right)$ since $\tau \rho \tau=\rho^{-1}$ (i.e. ρ^{-1} is in the conjugacy class of ρ). Then $Z(\rho)=\langle\rho\rangle$, which contains 4 elements. So $\mid C(\rho)=2$. This means we've already found the entire conjugacy class of ρ : $C(\rho)=\left\{\rho, \rho^{-1}\right\}$. There are many different ways to arrive at the final answer, which is that $8=1+1+2+2+2$.

