6.5 *p*-groups

The conjugation action of $G \curvearrowright G$ is one tool that mathematicians have used to classify finite groups. We will now discuss the simplest cases, which are groups of order a prime power.

Let p be a prime number. Recall that we were able to completely classify groups of order p: they are all isomorphic to C_p . Review exercise: Can you prove this now?

Definition 6.37. A *p*-group is a group of order p^r where $r \ge 1$.

Proposition 6.38. The center of a *p*-group is not the trivial group.

Proof. Suppose $|G| = p^r$ and consider the class equation. All conjugacy classes must be of order p, but we know $|C_1| = 1$. So there must be at least p one's, i.e. at least p elements in the center.

Exercise 6.39. Use a similar argument to prove the following theorem:

Theorem 6.40. Let *G* be a *p*-group, and suppose *G* acts on a finite set *S*. If the order of *S* is not divisible by *p*, then there is a **fixed point** of the action $G \curvearrowright S$, i.e. an element $s \in S$ where $G_s = G$.

Proposition 6.41. Every group of order p^2 is abelian.

Proof. Let $|G| = p^2$. By Proposition 6.38, $Z(G) \neq \{1\}$. A priori there are two possibilities: |Z(G)| is either p^2 or p. If $|Z(G)| = p^2$, then we are done. We will now show that |Z(G)| *cannot* be p.

By way of contradiction, suppose that |Z(G)| = p. Now let $x \in G - Z(G)$. Then Z(x) contains $\langle x \rangle$ and also Z(G), so the order of Z(x) must be p^2 . But then $x \in Z(G)$, which is a contradiction.

Corollary 6.42. A group of order p^2 is either cyclic, or the product of two cyclic groups of order p.

Proof. Pick an element $x \neq 1$ in *G*. Then $|x| \in \{p, p^2\}$. If $|x| = p^2$, then $G = \langle x \rangle \cong C_{p^2}$. If |x| = p, then pick some $y \notin \langle x \rangle$. Now observe: Can you prove each of these?

- $\langle x \rangle, \langle y \rangle \trianglelefteq G$
- $\langle x \rangle \cap \langle y \rangle = \{1\}$
- $\langle x \rangle \langle y \rangle = G$

Therefore $G \cong \langle x \rangle \times \langle y \rangle$.

Remark 6.43. We don't have the tools to prove the following fact, but it's an important theorem in algebra:

Theorem 6.44 (Classification of finite abelian groups). If *G* is a finite abelian group, then it is isomorphic to a product of finite cyclic groups.

More generally, there is a related theorem for *finitely generated* abelian groups. The proof relies on thinking about abelian group as \mathbb{Z} -modules, which you'll learn about later in the 150 series.