MAT 150A Winter 2024
Instructor: Melissa Zhang
Exam 1

By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else:

Name (sign): \qquad Name (print): \qquad

Name of left neighbor: \qquad Name of right neighbor: \qquad
If you are next to the wall, then write "Wally" as your left or right neighbor. Write "Nemo" for your left/right neighbor if you don't have a left/right neighbor, respectively.

Question	Points	Style Points	Score
Q1	20	5	
Q2	15	5	
Q3	15	5	
Q4	30	5	
Total:	80	20	

- This is a closed-book exam. You may not use the textbook, cheat sheets, notes, or any other outside material. No calculators, computers, phones, or any other electronics are allowed.
- The last page of the exam packet is provided for scratchwork. Do not detach this sheet from your exam packet.
- You have 45 minutes to complete this exam. If you are done early, you may leave after handing in your exam packet.
- Everyone must work on their own exam. Any suspicions of collaboration, copying, or otherwise violating the Student Code of Conduct will be forwarded to the Student Judicial Board.
- This is a proof-based course. All statements must be justified and argued clearly in the style of a mathematical proof. Failure to do so will result in the loss of correctness and/or style points.

1. Consider $H=\left\{\left.\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\} \subset G L_{2}(\mathbb{R})$. Prove that H is a subgroup of $G L_{2}(\mathbb{R})$. Recall that $G L_{2}(\mathbb{R})$ is a group under matrix multiplication.
2. Let G be a group, and let x and g be elements of G.
(a) First suppose that $|x|=n<\infty$. Prove that $|x|=\left|g x g^{-1}\right|$.
(b) Now suppose $|x|=\infty$. Prove that we also have $|x|=\left|g x g^{-1}\right|$.
3. Let G be a group. Prove that $\varphi: G \rightarrow G$ defined by $\varphi(x)=x^{-1}$ is a homomorphism if and only if G is abelian.
4. Let $f: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}$be defined by $z \mapsto z^{4}$. Recall that the group operation on $\mathbb{C}^{\times}=\mathbb{C}^{\times}-\{0\}$ is complex multiplication.
(a) Prove that f is a homomorphism.
(b) Find the kernel of f.
(c) Find the image of f.

Scratchwork

Nothing on this page will be graded.

