MAT 150A Fall 2023 Instructor: Melissa Zhang Exam 1

By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else:

 Name (sign):

 Name of left neighbor:
 Name of right neighbor:

If you are next to the wall, then write "Wally" as your left or right neighbor. Write "Nemo" for your left/right neighbor if you don't have a left/right neighbor, respectively.

Question	Points	Score
Q1	20	
Q2	15	
Q3	25	
Total:	60	

- This is a **closed-book** exam. You may not use the textbook, cheat sheets, notes, or any other outside material. No calculators, computers, phones, or any other electronics are allowed.
- The last page of the exam packet is provided for scratchwork. **Do not detach** this sheet from your exam packet.
- You have **45 minutes** to complete this exam. If you are done early, you may leave after handing in your exam packet.
- Everyone must work on their own exam. Any suspicions of collaboration, copying, or otherwise violating the Student Code of Conduct will be forwarded to the Student Judicial Board.
- This is a proof-based course. All statements must be justified and argued in the style of a mathematical proof. Failure to do so will result in the loss of correctness and/or style points.

1. Let G be a group. Prove that the map $\varphi: G \to G, x \mapsto x^2$, is an endomorphism of G if and only if G is abelian.

SOLUTION.

 (\Rightarrow) Suppose $\varphi(x) = x^2$ is an endomorphism of G. We want to show that any two elements $x, y \in G$ commute, i.e. xy = yx.

Since φ is a homomorphism, we have

$$(xy)^2 = \varphi(xy) = \varphi(x)\varphi(y) = x^2y^2,$$

i.e. xyxy = xxyy. By cancelling the x on the left and the y on the right, we have yx = xy, which is what we wanted to show.

 (\Leftarrow) Now suppose G is abelian. Then

$$\varphi(xy) = (xy)^2 = xyxy = x(yx)y = x(xy)y = x^2y^2 = \varphi(x)\varphi(y),$$

so $\varphi: G \to G$ is a homomorphism, and therefore an endomorphism of G.

2. Let $\varphi : G \to G'$ be a group homomorphism. Suppose that |G| = 18 and |G'| = 15, and that φ is not the trivial homomorphism. What is the $|\ker \varphi|$?

SOLUTION.

Since $|G| = |\ker \varphi| \cdot |\operatorname{im} \varphi|$, both $|\ker \varphi|$ and $|\operatorname{im} \varphi|$ must divide |G| = 18. Since $\operatorname{im} \varphi$ is a subgroup of G', so $|\operatorname{im} \varphi|$ must also divide 15. This means that $|\operatorname{im} \varphi| \in \{1, 2, 3, 6, 18\} \cap \{1, 3, 5, 15\} = \{1, 3\}.$

But φ is not the trivial homomorphism, so $|\operatorname{im} \varphi| > 1$. Therefore $|\operatorname{im} \varphi| = 3$, and so $|\ker \varphi| = 18/3 = 6$.

- 3. Let H and K be subgroups of G.
 - (a) Prove that if HK = KH, then HK is a subgroup of G.
 - (b) Prove that if H and K are both *normal* subgroups of G, then their intersection $H \cap K$ is also a *normal* subgroup of G.

SOLUTION.

(a) Assume that HK = KH. To see that HK ≤ G, we check *identity*, *inverses*, and *closure*. (Identity) Since H, K ≤ G, 1 ∈ H and 1 ∈ K; therefore 1 = 1 · 1 ∈ HK.
(Inverses) Let hk be an arbitrary element of HK, where h ∈ H and k ∈ K. Then (hk)⁻¹ = k⁻¹h⁻¹ ∈ KH = HK, so HK is closed under taking inverses.
(Closure) Now let h₁, h₂ ∈ H, and k₁, k₂ ∈ K, so that h₁k₁, h₂k₂ are arbitrary elements of HK. We want to show that (h₁k₁)(h₂k₂) ∈ HK. Since k₁h₂ ∈ KH = HK, there exist h' ∈ H and k' ∈ K such that k₁h₂ = h'k'. Then

$$(h_1k_1)(h_2k_2) = h_1(k_1h_2)k_2 = h_1(h'k')k_2 = (h_1h')(k'k_2).$$

Since H and K are both subgroups, $h_1h' \in H$ and $k'k_2 \in K$; therefore $(h_1h')(k'k_2) \in HK$, as we wanted to show.

(b) Let $x \in H \cap K$ and $g \in G$. Since $H \leq G$, we have $gxg^{-1} \in H$; similarly, since $K \leq G$, we have $gxg^{-1} \in K$. Therefore $gxg^{-1} \in H \cap K$, so $H \cap K \leq G$.

Scratchwork

Nothing on this page will be graded.