MAT 150A Fall 2023
Instructor: Melissa Zhang
Exam 1

By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else:

Name (sign): \qquad Name (print): \qquad

Name of left neighbor: \qquad Name of right neighbor: \qquad
If you are next to the wall, then write "Wally" as your left or right neighbor. Write "Nemo" for your left/right neighbor if you don't have a left/right neighbor, respectively.

Question	Points	Score
Q1	20	
Q2	15	
Q3	25	
Total:	60	

- This is a closed-book exam. You may not use the textbook, cheat sheets, notes, or any other outside material. No calculators, computers, phones, or any other electronics are allowed.
- The last page of the exam packet is provided for scratchwork. Do not detach this sheet from your exam packet.
- You have 45 minutes to complete this exam. If you are done early, you may leave after handing in your exam packet.
- Everyone must work on their own exam. Any suspicions of collaboration, copying, or otherwise violating the Student Code of Conduct will be forwarded to the Student Judicial Board.
- This is a proof-based course. All statements must be justified and argued in the style of a mathematical proof. Failure to do so will result in the loss of correctness and/or style points.

1. Let G be a group. Prove that the $\operatorname{map} \varphi: G \rightarrow G, x \mapsto x^{2}$, is an endomorphism of G if and only if G is abelian.

Solution.

$(\Rightarrow) \quad$ Suppose $\varphi(x)=x^{2}$ is an endomorphism of G. We want to show that any two elements $x, y \in G$ commute, i.e. $x y=y x$.
Since φ is a homomorphism, we have

$$
(x y)^{2}=\varphi(x y)=\varphi(x) \varphi(y)=x^{2} y^{2}
$$

i.e. $x y x y=x x y y$. By cancelling the x on the left and the y on the right, we have $y x=x y$, which is what we wanted to show.
(\Leftarrow) Now suppose G is abelian. Then

$$
\varphi(x y)=(x y)^{2}=x y x y=x(y x) y=x(x y) y=x^{2} y^{2}=\varphi(x) \varphi(y),
$$

so $\varphi: G \rightarrow G$ is a homomorphism, and therefore an endomorphism of G.
2. Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. Suppose that $|G|=18$ and $\left|G^{\prime}\right|=15$, and that φ is not the trivial homomorphism. What is the $|\operatorname{ker} \varphi|$?

Solution.

Since $|G|=|\operatorname{ker} \varphi| \cdot|\operatorname{im} \varphi|$, both $|\operatorname{ker} \varphi|$ and $|\operatorname{im} \varphi|$ must divide $|G|=18$. Since $\operatorname{im} \varphi$ is a subgroup of G^{\prime}, so $|\operatorname{im} \varphi|$ must also divide 15 . This means that $|\operatorname{im} \varphi| \in\{1,2,3,6,18\} \cap$ $\{1,3,5,15\}=\{1,3\}$.
But φ is not the trivial homomorphism, so $|\operatorname{im} \varphi|>1$. Therefore $|\operatorname{im} \varphi|=3$, and so $|\operatorname{ker} \varphi|=$ $18 / 3=6$.
3. Let H and K be subgroups of G.
(a) Prove that if $H K=K H$, then $H K$ is a subgroup of G.
(b) Prove that if H and K are both normal subgroups of G, then their intersection $H \cap K$ is also a normal subgroup of G.

Solution.

(a) Assume that $H K=K H$. To see that $H K \leq G$, we check identity, inverses, and closure. (Identity) Since $H, K \leq G, 1 \in H$ and $1 \in K$; therefore $1=1 \cdot 1 \in H K$.
(Inverses) Let $h k$ be an arbitrary element of $H K$, where $h \in H$ and $k \in K$. Then $(h k)^{-1}=k^{-1} h^{-1} \in K H=H K$, so $H K$ is closed under taking inverses.
(Closure) Now let $h_{1}, h_{2} \in H$, and $k_{1}, k_{2} \in K$, so that $h_{1} k_{1}, h_{2} k_{2}$ are arbitrary elements of $H K$. We want to show that $\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right) \in H K$. Since $k_{1} h_{2} \in K H=H K$, there exist $h^{\prime} \in H$ and $k^{\prime} \in K$ such that $k_{1} h_{2}=h^{\prime} k^{\prime}$. Then

$$
\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)=h_{1}\left(k_{1} h_{2}\right) k_{2}=h_{1}\left(h^{\prime} k^{\prime}\right) k_{2}=\left(h_{1} h^{\prime}\right)\left(k^{\prime} k_{2}\right) .
$$

Since H and K are both subgroups, $h_{1} h^{\prime} \in H$ and $k^{\prime} k_{2} \in K$; therefore $\left(h_{1} h^{\prime}\right)\left(k^{\prime} k_{2}\right) \in$ $H K$, as we wanted to show.
(b) Let $x \in H \cap K$ and $g \in G$. Since $H \unlhd G$, we have $g x g^{-1} \in H$; similarly, since $K \unlhd G$, we have $g x g^{-1} \in K$. Therefore $g x g^{-1} \in H \cap K$, so $H \cap K \unlhd G$.

Scratchwork

Nothing on this page will be graded.

