MAT 150A Exam 2 Practice Solutions

Instructor: Melissa Zhang

- 1. Let $H = \{\pm 1, \pm i\} \le \mathbb{C}^{\times}$.
 - (a) Prove that H is normal in C[×].
 Since C[×] is an abelian group, every subgroup is normal.
 - (b) Describe explicitly the cosets of H.

For each positive radius $r \in \mathbb{R}^+$ and each angle $\theta \in [0, \pi/2)$, we have a coset $re^{i\theta}H$. (This coset is obtained visually by first rotating the four points of H CCW along the unit circle by θ and then scaling the circle by a factor of r.)

- (c) Identify the quotient group C[×]/H. (*Hint:* If you're stuck, first play around with the map ψ : S¹ × S¹ given by e^{iθ} → (e^{iθ})².)
 Consider the map φ : C[×] → C[×] given by z → z⁴. This is a homomorphism since φ(xy) = (xy)⁴ = x⁴y⁴ = φ(x)φ(y), for x, y ∈ C[×]. This map is also surjective, since for any z = re^{iθ}, the element ⁴√re^{iθ/4} ∈ C[×] maps to z. Let z = re^{iθ} ∈ ker φ. Since φ(z) = φ(r⁴e^{4iθ}), it must be that r = 1 and 4θ is a multiple of 2π. Therefore ker φ = H precisely. By the First Isomorphism Theorem, C[×]/H ≅ C[×].
- 2. Let $\varphi: G \to G'$ be a surjective homomorphism between finite groups. Suppose $H \leq G$ and $H' \leq G'$ correspond to each other under the bijection in the Correspondence Theorem. Prove that [G:H] = [G':H'].

Fix the corresponding pair H and H'. Recall that H is a subgroup of G containing $N = \ker \varphi$, $H' = \varphi(H)$, and $H = \varphi^{-1}(H')$.

To show [G:H] = [G':H'], it suffices to give a bijective correspondence

$$\{ \text{ left cosets of } H \text{ in } G \} \xrightarrow{J} \{ \text{ left cosets of } H' \text{ in } G' \}.$$

$$(1)$$

To a coset aH, define f(aH) be $\varphi(aH)$. Since φ is a homomorphism, $\varphi(aH) = \varphi(a)\varphi(H) = \varphi(a)H'$, so f(aH) is indeed a left coset of H'.

We now show that f is a bijection. To see that f is injective, suppose two cosets aH and bH satisfy f(aH) = f(bH). This means that $\varphi(a)H' = \varphi(b)H'$, so $\varphi(b)^{-1}\varphi(a) = \varphi(b^{-1}a) \in H'$. Hence $b^{-1}a \in H$, i.e. aH = bH. To see that f is surjective, let a'H' be a left coset of H' in G'. Since φ is surjective, there exists $a \in \varphi^{-1}(a')$. Then $f(aH) = \varphi(aH) = \varphi(a)\varphi(H) = aH'$. Since f is a bijection, the cardinality of the left and right sides of (1) are the same, i.e. [G:H] = [G':H'].

3. Let q be a 5-cycle in S_n , where $n \ge 6$.

(a) What is the cycle type of q^{17} ? Since q is a 5-cycle, we may write

$$q = (a_1 \ a_2 \ a_3 \ a_4 \ a_5)$$

for some numbers $a_i \in \{1, 2, ..., n\}$ for $1 \le i \le 5$. Since $17 \equiv 2 \mod 5$, the cycle notation for q^{17} is

$$q^{1i} = (a_1 \ a_3 \ a_5 \ a_2 \ a_4),$$

so q^{17} is also a 5-cycle.

(b) In terms of *n*, how many permutations are there such that $pqp^{-1} = q$? A conjugation pqp^{-1} of *q* is just a relabling of the numbers a_i above:

$$pqp^{-1} = (p(a_1) \ p(a_2) \ p(a_3) \ p(a_4) \ p(a_5)).$$

If we want $pqp^{-1} = q$, then the above 5-cycle must be taken to an equivalent 5-cycle, i.e. the cyclic order of the numbers a_i must be preserved. There are 5 such rotations. The value of p on the other n-5 numbers does not affect the conjugation. Therefore there are 5(n-5)! permutations p such that $pqp^{-1} = q$.

4. Prove that the conjugacy classes of a free group F_S (where S is the set of generators) are in bijection with the set of **closed words**, i.e. words that are written in a circle:

We can equivalently describe a closed word as an equivalence class of words under rotation, i.e. for a word $w = w_0 w_1 \cdots w_k \in F_S$, w is equivalent to any word w' of the form

$$w' = w_j w_{1+j} \cdots w_{k+j},\tag{2}$$

where $1 \le j \le k$ and where the indices interpreted mod k + 1. (Of course, $w \sim w$ as well.) In other words,

$$w \sim w_2 w_3 \cdots w_k w_1 \sim w_3 w_4 \cdots w_1 w_2,$$

and so on.

Let $x \in F_S$. Then the conjugate xwx^{-1} is equivalent to $wx^{-1}x = w$, so $w \sim xwx^{-1}$.

Now suppose we are given w and w' in the same equivalence class, and write them as $w = w_0 w_1 \cdots w_k$ and $w' = w_j w_{1+j} \cdots w_{k+j}$ as above. Let $x = w_0 w_1 \cdots w_{j-1}$.

Conversely, given w and w' be in the same equivalence class. If w' = w, then we are done. So assume not, and write w' as a rotation of w as in (2). Consider the following conjugate of w':

$$xw'x^{-1} = (w_0w_1\cdots w_{j-1})\cdot w\cdot (w_0w_1\cdots w_{j-1})^{-1}$$

= $(w_0w_1\cdots w_{j-1})\cdot (w_jw_{1+j}\cdots w_{(k-j)+j})\cdot (w_{(k+1-j)+j}\cdots w_{k+j})\cdot (w_0w_1\cdots w_{j-1})^{-1}$
= $w\cdot (w_{(k+1-j)+j}\cdots w_{k+j})\cdot (w_0w_1\cdots w_{j-1})^{-1}$

But $(k+1-j)+j = k+1 = 0 \mod k+1$, so the latter two factors are are inverses. Therefore $xw'x^{-1} = w$, and so w' and w are in the same conjugacy class of F_S .