MAT 150A Exam 2 Practice Solutions

Instructor: Melissa Zhang

1. Let $H=\{ \pm 1, \pm i\} \leq \mathbb{C}^{\times}$.
(a) Prove that H is normal in \mathbb{C}^{\times}.

Since \mathbb{C}^{\times}is an abelian group, every subgroup is normal.
(b) Describe explicitly the cosets of H.

For each positive radius $r \in \mathbb{R}^{+}$and each angle $\theta \in[0, \pi / 2)$, we have a coset $r e^{i \theta} H$. (This coset is obtained visually by first rotating the four points of H CCW along the unit circle by θ and then scaling the circle by a factor of r.)
(c) Identify the quotient group \mathbb{C}^{\times} / H. (Hint: If you're stuck, first play around with the map $\psi: S^{1} \times S^{1}$ given by $e^{i \theta} \mapsto\left(e^{i \theta}\right)^{2}$.)
Consider the map $\varphi: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}$given by $z \mapsto z^{4}$. This is a homomorphism since $\varphi(x y)=(x y)^{4}=x^{4} y^{4}=\varphi(x) \varphi(y)$, for $x, y \in \mathbb{C}^{\times}$. This map is also surjective, since for any $z=r e^{i \theta}$, the element $\sqrt[4]{r} e^{i \theta / 4} \in \mathbb{C}^{\times}$maps to z.
Let $z=r e^{i \theta} \in \operatorname{ker} \varphi$. Since $\varphi(z)=\varphi\left(r^{4} e^{4 i \theta}\right)$, it must be that $r=1$ and 4θ is a multiple of 2π. Therefore $\operatorname{ker} \varphi=H$ precisely.
By the First Isomorphism Theorem, $\mathbb{C}^{\times} / H \cong \mathbb{C}^{\times}$.
2. Let $\varphi: G \rightarrow G^{\prime}$ be a surjective homomorphism between finite groups. Suppose $H \leq G$ and $H^{\prime} \leq G^{\prime}$ correspond to each other under the bijection in the Correspondence Theorem. Prove that $[G: H]=\left[G^{\prime}: H^{\prime}\right]$.
Fix the corresponding pair H and H^{\prime}. Recall that H is a subgroup of G containing $N=\operatorname{ker} \varphi$, $H^{\prime}=\varphi(H)$, and $H=\varphi^{-1}\left(H^{\prime}\right)$.
To show $[G: H]=\left[G^{\prime}: H^{\prime}\right]$, it suffices to give a bijective correspondence

$$
\begin{equation*}
\{\text { left cosets of } H \text { in } G\} \xrightarrow{f}\left\{\text { left cosets of } H^{\prime} \text { in } G^{\prime}\right\} . \tag{1}
\end{equation*}
$$

To a coset $a H$, define $f(a H)$ be $\varphi(a H)$. Since φ is a homomorphism, $\varphi(a H)=\varphi(a) \varphi(H)=$ $\varphi(a) H^{\prime}$, so $f(a H)$ is indeed a left coset of H^{\prime}.
We now show that f is a bijection. To see that f is injective, suppose two cosets $a H$ and $b H$ satisfy $f(a H)=f(b H)$. This means that $\varphi(a) H^{\prime}=\varphi(b) H^{\prime}$, so $\varphi(b)^{-1} \varphi(a)=\varphi\left(b^{-1} a\right) \in H^{\prime}$. Hence $b^{-1} a \in H$, i.e. $a H=b H$. To see that f is surjective, let $a^{\prime} H^{\prime}$ be a left coset of H^{\prime} in G^{\prime}. Since φ is surjective, there exists $a \in \varphi^{-1}\left(a^{\prime}\right)$. Then $f(a H)=\varphi(a H)=\varphi(a) \varphi(H)=a H^{\prime}$.
Since f is a bijection, the cardinality of the left and right sides of (1) are the same, i.e. $[G: H]=\left[G^{\prime}: H^{\prime}\right]$.
3. Let q be a 5 -cycle in S_{n}, where $n \geq 6$.
(a) What is the cycle type of q^{17} ? Since q is a 5 -cycle, we may write

$$
q=\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4}
\end{array} a_{5}\right)
$$

for some numbers $a_{i} \in\{1,2, \ldots, n\}$ for $1 \leq i \leq 5$. Since $17 \equiv 2 \bmod 5$, the cycle notation for q^{17} is

$$
q^{17}=\left(a_{1} a_{3} a_{5} a_{2} a_{4}\right),
$$

so q^{17} is also a 5 -cycle.
(b) In terms of n, how many permutations are there such that $p q p^{-1}=q$? A conjugation $p q p^{-1}$ of q is just a relabling of the numbers a_{i} above:

$$
p q p^{-1}=\left(p\left(a_{1}\right) p\left(a_{2}\right) p\left(a_{3}\right) p\left(a_{4}\right) p\left(a_{5}\right)\right) .
$$

If we want $p q p^{-1}=q$, then the above 5 -cycle must be taken to an equivalent 5 -cycle, i.e. the cyclic order of the numbers a_{i} must be preserved. There are 5 such rotations. The value of p on the other $n-5$ numbers does not affect the conjugation. Therefore there are $5(n-5)$! permutations p such that $p q p^{-1}=q$.
4. Prove that the conjugacy classes of a free group F_{S} (where S is the set of generators) are in bijection with the set of closed words, i.e. words that are written in a circle:

We can equivalently describe a closed word as an equivalence class of words under rotation, i.e. for a word $w=w_{0} w_{1} \cdots w_{k} \in F_{S}, w$ is equivalent to any word w^{\prime} of the form

$$
\begin{equation*}
w^{\prime}=w_{j} w_{1+j} \cdots w_{k+j} \tag{2}
\end{equation*}
$$

where $1 \leq j \leq k$ and where the indices interpreted $\bmod k+1$. (Of course, $w \sim w$ as well.) In other words,

$$
w \sim w_{2} w_{3} \cdots w_{k} w_{1} \sim w_{3} w_{4} \cdots w_{1} w_{2}
$$

and so on.
Let $x \in F_{S}$. Then the conjugate $x w x^{-1}$ is equivalent to $w x^{-1} x=w$, so $w \sim x w x^{-1}$.
Now suppose we are given w and w^{\prime} in the same equivalence class, and write them as $w=$ $w_{0} w_{1} \cdots w_{k}$ and $w^{\prime}=w_{j} w_{1+j} \cdots w_{k+j}$ as above. Let $x=w_{0} w_{1} \cdots w_{j-1}$.
Conversely, given w and w^{\prime} be in the same equivalence class. If $w^{\prime}=w$, then we are done. So assume not, and write w^{\prime} as a rotation of w as in (2). Consider the following conjugate of w^{\prime} :

$$
\begin{aligned}
x w^{\prime} x^{-1} & =\left(w_{0} w_{1} \cdots w_{j-1}\right) \cdot w \cdot\left(w_{0} w_{1} \cdots w_{j-1}\right)^{-1} \\
& =\left(w_{0} w_{1} \cdots w_{j-1}\right) \cdot\left(w_{j} w_{1+j} \cdots w_{(k-j)+j}\right) \cdot\left(w_{(k+1-j)+j} \cdots w_{k+j}\right) \cdot\left(w_{0} w_{1} \cdots w_{j-1}\right)^{-1} \\
& =w \cdot\left(w_{(k+1-j)+j} \cdots w_{k+j}\right) \cdot\left(w_{0} w_{1} \cdots w_{j-1}\right)^{-1}
\end{aligned}
$$

But $(k+1-j)+j=k+1=0 \bmod k+1$, so the latter two factors are are inverses. Therefore $x w^{\prime} x^{-1}=w$, and so w^{\prime} and w are in the same conjugacy class of F_{S}.

