MAT 150A Fall 2023
Instructor: Melissa Zhang
Exam 2

By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else:

Name (sign): \qquad Name (print): \qquad

Name of left neighbor: \qquad Name of right neighbor: \qquad
If you are next to the wall, then write "Wally" as your left or right neighbor. Write "Nemo" for your left/right neighbor if you don't have a left/right neighbor, respectively.

Question	Points	Score
Q1	25	
Q2	15	
Q3	20	
Total:	60	

- This is a closed-book exam. You may not use the textbook, cheat sheets, notes, or any other outside material. No calculators, computers, phones, or any other electronics are allowed.
- The last page of the exam packet is provided for scratchwork. Do not detach this sheet from your exam packet.
- You have 45 minutes to complete this exam. If you are done early, you may leave after handing in your exam packet.
- Everyone must work on their own exam. Any suspicions of collaboration, copying, or otherwise violating the Student Code of Conduct will be forwarded to the Student Judicial Board.
- This is a proof-based course. All statements must be justified and argued in the style of a mathematical proof. Failure to do so will result in the loss of correctness and/or style points.

1. Let C_{12} be generated by x and let C_{6} be generated by y. Consider the surjective homomorphism $\varphi: C_{12} \rightarrow C_{6}$ determined by $x \mapsto y$. Explicitly write down the correspondence between subsets given by the Correspondence Theorem. If you are claiming a group G has k subsets, you must explain (briefly) why you've found all of them.

Solution.
First note that $\varphi\left(x^{6}\right)=y^{6}=1$, so $\left\{1, x^{6}\right\} \subset \operatorname{ker} \varphi$. Since $|\operatorname{im} \varphi|=6$ and $\left|C_{12}\right|=12$, we know $|\operatorname{ker} \varphi|=2$. So $\operatorname{ker} \varphi=\left\{1, x^{6}\right\}$.
The Correspondence Theorem tells us there is a bijection between the set of subgroups of C_{12} containing ker φ and the set of subgroups of C_{6}. In particular, for a subgroup $H \leq C_{6}$, $\varphi^{-1}(H)$ is the associated subgroup of C_{12} containing $\operatorname{ker} \varphi$.
We first enumerate the subgroups of C_{6}. On a homework, we showed that if $H \leq C_{6}$, then H is cyclic. Therefore the subgroups of C_{6} are
(a) $\langle 1\rangle$
(b) $\langle y\rangle=\left\langle y^{5}\right\rangle=C_{6}$
(c) $\left\langle y^{2}\right\rangle=\left\langle y^{4}\right\rangle$
(d) $\left\langle y^{3}\right\rangle$.

These correspond to the following subgroups of C_{12}, respectively:
(a) $\varphi^{-1}(\langle 1\rangle)=\left\langle 1, x^{6}\right\rangle$
(b) $\varphi^{-1}(\langle y\rangle)=\langle x\rangle=C_{12}$
(c) $\varphi^{-1}\left(\left\langle y^{2}\right\rangle\right)=\left\langle x^{2}\right\rangle=\left\{1, x^{2}, x^{4}, x^{6}, x^{8}, x^{10}\right\}$
(d) $\varphi^{-1}\left(\left\langle y^{3}\right\rangle\right)=\left\langle x^{3}\right\rangle=\left\{1, x^{3}, x^{6}, x^{9}\right\}$.
2. For each of the following, determine whether σ_{1} and σ_{2} are conjugate to each other in S_{9}. If they are conjugate, find a permutation $\tau \in S_{9}$ such that $\tau \sigma_{1} \tau^{-1}=\sigma_{2}$.
Note: 2 a and 2 b were removed from the exam.
(a) $\sigma_{1}=\left(\begin{array}{ll}1 & 2\end{array}\right)(345)$ and $\sigma_{2}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)(45)$

Since σ_{1} and σ_{2} have the same cycle type, they are conjugate.
We can write

$$
\begin{aligned}
& \sigma_{1}=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{lll}
3 & 4 & 5
\end{array}\right) \\
& \sigma_{2}=\left(\begin{array}{lll}
4 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)
\end{aligned}
$$

so that the cycles of the same length line up. We may choose τ to send $1 \mapsto 4,2 \mapsto$ $5,3 \mapsto 1,4 \mapsto 2,5 \mapsto 3$. In cycle notation, $\tau=(14253)$.
Other answers are possible.
(b) $\sigma_{1}=(13)(246)$ and $\sigma_{2}=(35) \circ(24)(56)$

In cycle notation, we compute that $\sigma_{2}=(24)(356)$. This has the same cycle type as σ_{1} :

$$
\begin{aligned}
& \sigma_{1}=\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{lll}
2 & 4 & 6
\end{array}\right) \\
& \sigma_{2}=\left(\begin{array}{ll}
2 & 4
\end{array}\right)\left(\begin{array}{lll}
3 & 5 & 6
\end{array}\right)
\end{aligned}
$$

We may let τ send $1 \mapsto 2,3 \mapsto 4,2 \mapsto 3,4 \mapsto 5,6 \mapsto 6$. We can fill in the rest of the values of τ however we like. So one example of τ would be

$$
\tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right) .
$$

(c) $\sigma_{1}=(15)(7243)$ and $\sigma_{2}=\sigma_{1}^{2023}$

Solution.

Since 2023 is $1 \bmod 2$ and $3 \bmod 4=-1 \bmod 4, \sigma_{2}=\sigma_{1}^{2023}=(15)(7342)$. This has the same cycle type as σ_{1} :

$$
\begin{aligned}
& \sigma_{1}=(15)(7243) \\
& \sigma_{2}=(15)(7342)
\end{aligned}
$$

so one possible τ is $\tau=(23)$.
3. Let $G=\left(\mathbb{R}^{2},+\right)$ and let $D \leq G$ denote the set of points on the diagonal:

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: y=x\right\} .
$$

(a) Briefly explain why $D \unlhd G$.

Solution.
Since G is an abelian group, any subgroup is normal.
(b) Use the First Isomorphism Theorem to identify the quotient group G / D with a familiar group.

Solution.
We want to define a surjective homomorphism φ from G, such that $\operatorname{ker} \varphi=D$. So, let $\varphi: G \rightarrow \mathbb{R}^{+}$be defined by $(x, y) \mapsto y-x$. Then for any $(x, x) \in D$, we have $\varphi(x, x)=x-x=0$.
We check that φ is a surjective homomorphism. To see that φ is a homomorphism, we compute

$$
\begin{aligned}
\varphi\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right) & =\varphi\left(\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right) \\
& =y_{1}+y_{2}-x_{1}-x_{2} \\
& =\left(y_{1}-x_{2}\right)-\left(y_{2}-x_{2}\right) \\
& =\varphi\left(x_{1}, y_{1}\right)+\varphi\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

For any $r \in \mathbb{R}, \varphi$ sends $(0, r) \in \mathbb{R}^{2}$, so φ is surjective.
By the First Isomorphism Theorem, $G / \operatorname{ker} \varphi=G / D \cong \mathbb{R}^{+}$.

Scratchwork

Nothing on this page will be graded.

