MAT 150A HW02

[ADD YOUR NAME HERE]

Due Tuesday, 10/17/23 at 11:59 pm on Gradescope

Reminder. Your homework submission must be typed up in full sentences, with proper mathematical formatting. The following resources may be useful as you learn to use TeX and Overleaf:

- Overleaf's introduction to LaTeX: https://www.overleaf.com/learn/latex/Learn_LaTeX_ in_ 30_ minutes
- Detexify: https://detexify.kirelabs.org/classify.html

Covered in this HW Parts of Chp. 2 and 3, esp. §2.2–2.5, 3.2–3.3, 11.1. Groups, abelian groups, order of a group or element of a group, cyclic groups, subgroups; definition of rings, fields, and vector spaces; homomorphisms, normal subgroups, generators and relations.

Grading Some of the (parts of) problems will be graded in detail out of several points, and necessary feedback will be given. The rest will be graded out of 2 points. I will reveal which problems are fully graded in the solutions, which will be posted on the Friday following the due date.

Exercise 1

Let $\operatorname{ord}(g) \in \mathbb{N} \cup \{\infty\}$ denote the order of an element g in a group G. Recall that $\operatorname{ord}(g) = |\langle g \rangle|$ or, equivalently,

 $\operatorname{ord}(g) = \min \left\{ n \in \mathbb{N} : g^n = 1 \right\}.$

Let $a, b \in G$. Prove that $\operatorname{ord}(ab) = \operatorname{ord}(ba)$.

SOLUTION.

Exercise 2

Show by example that the product of elements of finite order in a group need not have finite order. What if the group is abelian?

SOLUTION.

Exercise 3

Prove that every subgroup of a cyclic group is cyclic. *Hint: Work with exponents and use the description of the subgroups of* \mathbb{Z}^+ .

SOLUTION.

Exercise 4

Let U denote the group of invertible upper triangular 2×2 matrices

$$\left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} : a, b, d \in \mathbb{R}, ad \neq 0 \right\} \subset GL_n(\mathbb{R})$$

and let $\varphi : U \to \mathbb{R}^{\times}$ be the map that sends $A \mapsto a^2$. Prove that φ is a homomorphism, and determine its kernel and image.

SOLUTION.

Exercise 5

Let $f : \mathbb{R}^+ \to \mathbb{C}^{\times}$ be the map $f(x) = e^{ix}$. Prove that f is a homomorphism, and determine its kernel and image.

SOLUTION.