MAT 150A HW03

[ADD YOUR NAME HERE]

Due Tuesday, 10/24/23 at 11:59 pm on Gradescope

Reminder. Your homework submission **must be typed** (TeX'ed) up in full sentences, with proper mathematical formatting. The following resources may be useful as you learn to use TeX and Overleaf:

- Overleaf's introduction to LaTeX: https://www.overleaf.com/learn/latex/Learn_LaTeX_ in_ 30_ minutes
- Detexify: https://detexify.kirelabs.org/classify.html

Covered in this HW Parts of Chp. 2, esp. §2.5–2.12. Homomorphisms, isomorphisms, cosets, index of subgroups, the Correspondence Theorem, product groups, quotient groups.

Grading Since Exam 1 is on Wednesday, October 25, all parts-of-problems in this homework will be graded out of 2 points. The goal is to practice and understand as many problems as you can. I advise against spending a disproportionate amount of time on any one problem; ask for help before the exam!

Exercise 1

Let $\varphi : G \to H$ be an *isomorphism*. Prove that for all $g \in G$, the order of g is the same as the order of $\varphi(g)$: $\operatorname{ord}(g) = \operatorname{ord}(\varphi(g))$.

SOLUTION.

Exercise 2

Let (A, \star) and (B, \diamond) be groups, and let $A \times B$ be their direct product. Recall that multiplication (i.e. the group operation, law of composition) is defined by

$$(a_1, b_1)(a_2, b_2) = (a_1 \star a_2, b_1 \diamond b_2)$$

for $a_i \in A$, $b_i \in B$, i = 1, 2. In this exercise, you will verify all the group axioms for $A \times B$.

- (a) Prove that multiplication is associative.
- (b) What's the identity element $A \times B$? (Prove it.)
- (c) What's the inverse of $(a, b) \in A \times B$? (Prove it.)

SOLUTION.

Exercise 3

- (a) Let p be a prime number. How many automorphisms does the cyclic group C_p have?
- (b) How many automorphisms does \mathbb{C}_{24} have?

SOLUTION.

Exercise 4

Let K and H be subgroups of a group G.

- (a) Prove that the intersection $K \cap H$ is a subgroup of G.
- (b) Prove that if $K \leq G$, then $K \cap H \leq H$.

SOLUTION.

Exercise 5

Prove that in a group, the products ab and ba are conjugate elements.

SOLUTION.

Exercise 6

Prove that every subgroup of index 2 is a normal subgroup.

SOLUTION.