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Participation Slip

1 Take a slip from the front of the room.

2 Write your full name on the top left corner.

3 Answer the following question. You are encouraged to discuss
your answer with those around you.

Exercise (write solution on participation slip)

Prove the following proposition.
Proposition 2.2.3 (Cancellation Law) Let G be a group, and let
a, b, c ∈ G .

1 If ab = ac or if ba = ca, then b = c .

2 If ab = a or if ba = a, then b = 1.
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More examples and non-examples of groups

Definition

An abelian group is a group whose law of composition is
commutative.

The order of a group G is the number of elements that it
contains, and is denoted |G |.

If |G | is finite, then G is a finite group.
If |G | is infinite, then G is an infinite group.

Some familiar infinite abelian groups

Your book’s notation is on the left.

Z+ := (Z,+)

R+ := (R,+)

R× := (R− {0}, ·) Why do we need to remove 0?

C+,C×, defined analogously
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Some properties of groups

Definition

An abelian group is a group whose law of composition is
commutative.

The order of a group G is the number of elements that it
contains, and is denoted |G |.

If |G | is finite, then G is a finite group.
If |G | is infinite, then G is an infinite group.

Some familiar infinite abelian groups

Your book’s notation is on the left.

Z+ := (Z,+)

R+ := (R,+)

R× := (R− {0}, ·) Why do we need to remove 0?

C+,C×, defined analogously
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Subgroups

Definition (copy to board)

A subset H of a group G is a subgroup (written H ≤ G ) if it has
the following properties:

Closure: If a, b ∈ H, then ab ∈ H as well.

Identity: e ∈ H.

Inverses: If a ∈ H, then a−1 ∈ H as well.

Examples of subgroups

1 (2Z,+) ≤ (Z,+)

2Z denotes the even integers, {. . . ,−2, 0, 2, 4, . . .}
2 G ≤ G and ⟨e⟩ ≤ G for any group G

⟨e⟩, also sometimes written ⟨1⟩, is the trivial group.

3 Sm ≤ Sn for m, n ∈ N, m < n
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Subgroups of (Z,+)

Theorem 2.3.3 (write on board)

Let S be a subgroup of (Z,+). Then S is either

the trivial subgroup {0} or

of the form nZ, where n is the smallest positive integer in the
set S .

The book uses the notation Zn instead of nZ. We will use the
notation nZ to be consistent with the notation Z/nZ.

We will now sketch the proof of the Theorem. See the book for
the full proof.
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Subgroups of (Z,+)

Proof of Theorem 2.3.3

Since 0 is the additive identity, 0 ∈ S . If S ̸= {0}, then there
exist integers n,−n ̸= 0 in S . So S contains a positive integer.

Let a be the smallest positive integer in S . We want to show
that aZ = S , so we need to show that aZ ≤ S and S ≤ aZ.
To check that aZ ≤ S , observe that (1) closure and induction
imply ka ∈ S , (2) 0 = 0a ∈ S , and (3) S contains inverses, so
−ka ∈ S .

To show S ⊆ aZ, pick any n ∈ S . Use division with remainder
to write n = qa+ r , where q, r ∈ Z and 0 ≤ r < a.

Since S is a subgroup, r = n − qa ∈ S .
Since a is the smallest positive integer in S , r must = 0.
Therefore n = qa ∈ aZ.
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Order of an element

Definition

Let G be a group, and let x be a particular element (or member).

The set of all elements of the form xk , where k ∈ Z, forms a
subgroup of G :

⟨x⟩ := {g ∈ G | g = xk for some k ∈ Z}.

⟨x⟩ ≤ G is called the cyclic subgroup generated by x .

We say that x has order n in the group G
if |⟨x⟩| = n.
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Order of an element

Let’s practice proving some propositions.

Proposition (write on board)

Let ⟨x⟩ be the cyclic subgroup of a group G generated by an
element x , and let S denote the set of integers k such that xk = 1.

(a) The set S is a subgroup of (Z,+).

(b) Two powers x r = x s , r ≥ s, if and only if x r−s = 1, i.e. if and
only if r − s ∈ S .

(c) Suppose S is not the trivial subgroup {0} ≤ (Z,+). Then
S = nZ for some positive integer n. The powers
{1, x , x2, . . . , xn−1} are the distinct elements of the subgroup
⟨x⟩, and the order of ⟨x⟩ is n.
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Order of an element

Claim (a) The set S is a subgroup of (Z,+).

Proof.

We check the three defining properties of subgroups.

1 (Closure) If xk = 1 and x l = 1, then xk+l = xkx l = 1. In
other words, if k and l are both in S , then k + l ∈ S as well.

2 (Identity) Since e = x0, we have e ∈ ⟨x⟩.
3 (Inverses) Suppose k ∈ S , i.e. xk = 1. Then

x−k = (xk)−1 = 1 too, so −k ∈ S as well.

Lecture 03



11/15

Order of an element

Claim (b) Two powers x r = x s , r ≥ s, if and only if x r−s = 1, i.e.
if and only if r − s ∈ S .

Proof.

The “i.e.” part is just restating the definition of S , so below we
prove the first “if and only if”.
First assume x r = x s . Then

x r−s = x rx−s = x sx−s = 1,

i.e. r − s ∈ S .
Conversely, assume x r−s = 1, i.e. r − s ∈ S . In other words,
x rx−s = 1 = x sx−s . The Cancellation Law then implies that
x r = x s .
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Order of an element

Claim (c) Suppose S is not the trivial subgroup {0} ≤ (Z,+).
Then S = nZ for some positive integer n. The powers
{1, x , x2, . . . , xn−1} are the distinct elements of the subgroup ⟨x⟩,
and the order of ⟨x⟩ is n.

Proof.

Suppose S ̸= {0}. By Theorem 2.3.3, S = nZ, where n is the
smallest positive integer in S .

Therefore 1, x , x2, . . . , xn−1 are all distinct.

For any power xk of x , use division with remainder to write
k = nq + r (where q, r ∈ Z, 0 ≤ r < n). Then xnq = 1q = 1,
so xk = xnqx r = x r .

Therefore xk is equal to exactly one of the powers
1, x , x2, . . . , xn−1.
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Matrix Groups

Notation / Definition

1 Mn×n(R) = {n × n matrices with entries in R}
This is not a group! Why not?

2 General linear group:
GLn(R) = {A ∈ Mn×n(R) | det(A) ̸= 0}.

3 Special linear group:
SLn(R) = {A ∈ Mn×n(R) | det(A) = 1}.

4 Mn×n(C),GLn(C),SLn(C) are defined analogously.

By definition, SLn(R) ⊆ GLn(R).
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Matrix Groups

Definition

A group G is a matrix group (over a field F)
if it is a subgroup of GLn(F).

For us F = R or C, most of the time. We’ll talk about fields
later.

Note that all elements of matrix groups are necessarily square
matrices. Why?
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Matrix Groups

Example: Klein four group �

V =

{(
1 0
0 1

)
,

(
−1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 −1

)}
Exercise

Prove that V is not cyclic.
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