Lecture 03

Melissa Zhang

MAT 150A

- Take a slip from the front of the room.
- Write your full name on the top left corner.
- Answer the following question. You are encouraged to discuss your answer with those around you.

Exercise (write solution on participation slip)

Prove the following proposition.

Proposition 2.2.3 (Cancellation Law) Let G be a group, and let $a, b, c \in G$.

If
$$ab = ac$$
 or if $ba = ca$, then $b = c$.

2) If
$$ab = a$$
 or if $ba = a$, then $b = 1$.

More examples and non-examples of groups

Definition

- An **abelian group** is a group whose law of composition is commutative.
- The **order** of a group *G* is the number of elements that it contains, and is denoted |G|.
 - If |G| is finite, then G is a *finite group*.
 - If |G| is infinite, then G is an *infinite group*.

Some familiar infinite abelian groups

Your book's notation is on the left.

•
$$\mathbb{Z}^+ := (\mathbb{Z}, +)$$

•
$$\mathbb{R}^+ := (\mathbb{R}, +)$$

- $\mathbb{R}^{\times} := (\mathbb{R} \{0\}, \cdot)$ Why do we need to remove 0?
- $\bullet \ \mathbb{C}^+, \mathbb{C}^{\times},$ defined analogously

Some properties of groups

Definition

- An **abelian group** is a group whose law of composition is commutative.
- The **order** of a group *G* is the number of elements that it contains, and is denoted |G|.
 - If |G| is finite, then G is a *finite group*.
 - If |G| is infinite, then G is an *infinite group*.

Some familiar infinite abelian groups

Your book's notation is on the left.

•
$$\mathbb{Z}^+ := (\mathbb{Z}, +)$$

•
$$\mathbb{R}^+ := (\mathbb{R}, +)$$

- $\mathbb{R}^{\times} := (\mathbb{R} \{0\}, \cdot)$ Why do we need to remove 0?
- $\bullet \ \mathbb{C}^+, \mathbb{C}^{\times},$ defined analogously

Definition (copy to board)

A subset *H* of a group *G* is a **subgroup** (written $H \le G$) if it has the following properties:

- Closure: If $a, b \in H$, then $ab \in H$ as well.
- Identity: $e \in H$.
- *Inverses*: If $a \in H$, then $a^{-1} \in H$ as well.

Examples of subgroups

(2Z, +) ≤ (Z, +)
2Z denotes the even integers, {..., -2, 0, 2, 4, ...}
G ≤ G and ⟨e⟩ ≤ G for any group G
⟨e⟩, also sometimes written ⟨1⟩, is the trivial group.
S_m ≤ S_n for m, n ∈ N, m < n

Theorem 2.3.3 (write on board)

Let S be a subgroup of $(\mathbb{Z}, +)$. Then S is either

- the trivial subgroup $\{0\}$ or
- of the form $n\mathbb{Z}$, where *n* is the smallest positive integer in the set *S*.

The book uses the notation $\mathbb{Z}n$ instead of $n\mathbb{Z}$. We will use the notation $n\mathbb{Z}$ to be consistent with the notation $\mathbb{Z}/n\mathbb{Z}$.

We will now sketch the proof of the Theorem. See the book for the full proof.

Proof of Theorem 2.3.3

- Since 0 is the additive identity, 0 ∈ S. If S ≠ {0}, then there exist integers n, -n ≠ 0 in S. So S contains a positive integer.
- Let a be the smallest positive integer in S. We want to show that aZ = S, so we need to show that aZ ≤ S and S ≤ aZ.
- To check that aZ ≤ S, observe that (1) closure and induction imply ka ∈ S, (2) 0 = 0a ∈ S, and (3) S contains inverses, so -ka ∈ S.
- To show S ⊆ aZ, pick any n ∈ S. Use division with remainder to write n = qa + r, where q, r ∈ Z and 0 ≤ r < a.
 - Since S is a subgroup, $r = n qa \in S$.
 - Since a is the smallest positive integer in S, r must = 0.
 - Therefore $n = qa \in a\mathbb{Z}$.

Definition

Let G be a group, and let x be a particular element (or *member*).

The set of all elements of the form x^k, where k ∈ Z, forms a subgroup of G:

$$\langle x \rangle := \{ g \in G \mid g = x^k \text{ for some } k \in \mathbb{Z} \}.$$

- $\langle x \rangle \leq G$ is called the **cyclic subgroup generated by** x.
- We say that x has order n in the group G if $|\langle x \rangle| = n$.

Let's practice proving some propositions.

Proposition (write on board)

Let $\langle x \rangle$ be the cyclic subgroup of a group G generated by an element x, and let S denote the set of integers k such that $x^k = 1$.

• The set S is a subgroup of
$$(\mathbb{Z}, +)$$
.

- Two powers $x^r = x^s$, $r \ge s$, if and only if $x^{r-s} = 1$, i.e. if and only if $r s \in S$.
- Suppose S is not the trivial subgroup $\{0\} \le (\mathbb{Z}, +)$. Then $S = n\mathbb{Z}$ for some positive integer n. The powers $\{1, x, x^2, \dots, x^{n-1}\}$ are the distinct elements of the subgroup $\langle x \rangle$, and the order of $\langle x \rangle$ is n.

Claim (a) The set S is a subgroup of $(\mathbb{Z}, +)$.

Proof.

We check the three defining properties of subgroups.

- (Closure) If $x^k = 1$ and $x^l = 1$, then $x^{k+l} = x^k x^l = 1$. In other words, if k and l are both in S, then $k + l \in S$ as well.
- 2 (Identity) Since $e = x^0$, we have $e \in \langle x \rangle$.
- (Inverses) Suppose $k \in S$, i.e. $x^k = 1$. Then $x^{-k} = (x^k)^{-1} = 1$ too, so $-k \in S$ as well.

Claim (b) Two powers $x^r = x^s$, $r \ge s$, if and only if $x^{r-s} = 1$, i.e. if and only if $r - s \in S$.

Proof.

The "i.e." part is just restating the definition of S, so below we prove the first "if and only if". First assume $x^r = x^s$. Then

$$x^{r-s} = x^r x^{-s} = x^s x^{-s} = 1,$$

i.e. $r - s \in S$. Conversely, assume $x^{r-s} = 1$, i.e. $r - s \in S$. In other words, $x^r x^{-s} = 1 = x^s x^{-s}$. The Cancellation Law then implies that $x^r = x^s$.

Order of an element

Claim (c) Suppose *S* is not the trivial subgroup $\{0\} \leq (\mathbb{Z}, +)$. Then $S = n\mathbb{Z}$ for some positive integer *n*. The powers $\{1, x, x^2, \ldots, x^{n-1}\}$ are the distinct elements of the subgroup $\langle x \rangle$, and the order of $\langle x \rangle$ is *n*.

Proof.

- Suppose $S \neq \{0\}$. By Theorem 2.3.3, $S = n\mathbb{Z}$, where *n* is the smallest positive integer in *S*.
 - Therefore $1, x, x^2, \ldots, x^{n-1}$ are all distinct.
- For any power x^k of x, use division with remainder to write k = nq + r (where $q, r \in \mathbb{Z}$, $0 \le r < n$). Then $x^{nq} = 1^q = 1$, so $x^k = x^{nq}x^r = x^r$.
- Therefore x^k is equal to *exactly one* of the powers $1, x, x^2, \dots, x^{n-1}$.

Notation / Definition

- M_{n×n}(ℝ) = {n × n matrices with entries in ℝ}
 This is not a group! Why not?
- ② General linear group: $GL_n(\mathbb{R}) = \{A \in M_{n \times n}(\mathbb{R}) \mid \det(A) \neq 0\}.$
- Special linear group: $SL_n(\mathbb{R}) = \{A \in M_{n \times n}(\mathbb{R}) \mid \det(A) = 1\}.$
- $M_{n \times n}(\mathbb{C}), GL_n(\mathbb{C}), SL_n(\mathbb{C})$ are defined analogously.

By definition, $SL_n(\mathbb{R}) \subseteq GL_n(\mathbb{R})$.

Definition

A group G is a **matrix group** (over a field \mathbb{F}) if it is a subgroup of $GL_n(\mathbb{F})$.

- For us $\mathbb{F}=\mathbb{R}$ or $\mathbb{C},$ most of the time. We'll talk about fields later.
- Note that all elements of matrix groups are necessarily square matrices. Why?

Example: Klein four group -

$$V = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$

Exercise

Prove that V is *not* cyclic.