Lecture 04

Melissa Zhang

MAT 150A

- Take a slip from the front of the room.
- **2** Write your full name on the top left corner.
- You will write down your answer to some clearly marked "Participation Slip" questions during lecture.
- Hand in your slip at the end of class.

Reminder

- Participation slips won't be graded until Lecture 9.
- From Lecture 9 and onward, your participation slip will be graded for completion.
- A score of 15 (out of 20 lecture days) will receive full credit.

So far in this class we've used a couple different notations for the **composition law / group operation** in a group G:

- **1** An abstract symbol, such as \circ .
 - Permutations p, q ∈ S_n are set maps [n] → [n]. We can compose them in two ways: p ∘ q or q ∘ p.
 - When $n \ge 3$, S_n is **nonabelian**, so in general $p \circ q \neq q \circ p$.
- Additive notation, where + is a commutative group operation:
 - e.g. $(\mathbb{Z}, +)$, $(\mathbb{Z}/n\mathbb{Z}, +)$, $(n\mathbb{Z}, +)$
 - Use 0 to represent the additive identity.
- **3** Multiplicative notation, where $b \circ a = b \cdot a$ is written ba:
 - If $x, y \in \mathbb{R}^{\times} = (\mathbb{R} \{0\}, \cdot)$, we write xy as their product.
 - If $p, q \in S_n$, we write pq or qp. In general, $pq \neq qp$.
 - Use 1 to represent the multiplicative identity.

Notation conventions summary

- Abstract symbol: $x \circ y$, $x \circ x^{-1} = x^{-1} \circ x = e$
- Additive notation when G is abelian: x + y = y + x, x + (-x) = 0
- Solution Multiplicative notation: xy, $xx^{-1} = x^{-1}x = 1$

The Integers \mathbb{Z} , the Prototypical **Ring**

Observe the following facts about the integers \mathbb{Z} :

- $(\mathbb{Z}, +)$ is an abelian group.
- **②** There is a multiplication operation \cdot and $1 \in \mathbb{Z}$ is the multiplicative identity.

Definition of a ring $(A, +, \cdot)$

A **ring** is a set A equipped with two *associative* binary operations, + and \cdot , such that

- (A, +) is an abelian group, with additive identity 0
- There is an element $1 \in A$ that is a multiplicative identity.

Note that

- · is **not** required to be commutative.
- Inverses under · are **not** required.

Definition of a ring $(A, +, \cdot)$

A **ring** is a set A equipped with two *associative* binary operations, + and \cdot , such that

- (A, +) is an abelian group, with additive identity 0
- There is an element $1 \in A$ that is a multiplicative identity.

Examples of rings

- ($\mathbb{Z}, +, \cdot$), ($\mathbb{R}, +, \cdot$), ($\mathbb{Z}/12\mathbb{Z}, +, \cdot$)
- $\mathbb{R}[x]$, polynomials in a variable x with coefficients in \mathbb{R}

Participation Slip

- **0** What is $5 \cdot 4$ in $\mathbb{Z}/12\mathbb{Z}$?
- **②** Find an element of $\mathbb{Z}/12\mathbb{Z}-\{0\}$ that is **not** invertible under $\cdot.$

Start with the ring $\mathbb{Z} = (\mathbb{Z}, +, \cdot).$

- Only 1 and −1 are invertible in Z. We say ±1 are units in the ring Z, because they are invertible (i.e. have an inverse) under ·.
- Note that \cdot is commutative.

Participation Slip

What are the units (invertible elements under multiplication) in $\mathbb{Z}/12\mathbb{Z}?$

, the Prototypical Field

Start with the ring $\mathbb{Z} = (\mathbb{Z}, +, \cdot).$

- Only 1 is invertible in Z. We say 1 is a unit in the ring Z, because it is invertible under ·.
- Note that \cdot is commutative.

Now expand the set of elements by declaring that inverses exist, for all elements of $\mathbb{Z} - \{0\}$:

- For $b \neq 0$, b^{-1} now exists, and $bb^{-1} = b^{-1}b = 1$, the multiplicative identity in the ring $\mathbb Z$
- For $a, b \in \mathbb{Z}$, $b \neq 0$, we can write $\frac{a}{b} := ab^{-1} = b^{-1}a$ (a *fraction*).

Call this new larger set $\operatorname{Frac}(\mathbb{Z})$, the fraction field of \mathbb{Z} . What is $\operatorname{Frac}(\mathbb{Z})$ better known as? The rational numbers are defined by $\mathbb{Q} := \operatorname{Frac}(\mathbb{Z})$.

Definition

- A field is a ring $(\mathbb{F},+,\cdot)$ where
 - addition (+) and multiplication (·) are both associative and commutative,
 - and all nonzero elements $\mathbb{F}^{\times} := \mathbb{F} \{0\}$ are all units.

We refer to \mathbb{F}^{\times} as the *units* of \mathbb{F} .

- Less precisely, a field is a set where addition, subtraction, multiplication, and division are all well-defined.
- Alternatively, (𝔽, +, ·) is a field if (𝔼, +) and (𝔼[×], ·) are both abelian groups.

Definition

- A field is a ring $(\mathbb{F},+,\cdot)$ where
 - \bullet addition (+) and multiplication (\cdot) are associative and commutative,
 - \bullet and all nonzero elements $\mathbb{F}^{\times}:=\mathbb{F}-\{0\}$ are all units.

Examples of Fields

1 $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$

2
$$(\mathbb{Z}/2\mathbb{Z},+,\cdot)$$

 $\bullet \quad \text{More generally, } (\mathbb{Z}/p\mathbb{Z},+,\cdot) \text{, where } p \text{ is prime}$

Define a new symbol *i*, and let $i^2 = -1$. (Informally, " $i = \sqrt{-1}$.")

The Complex Numbers $\mathbb C$

The *complex numbers*, denoted \mathbb{C} , is the field

 $\mathbb{R} + \mathbb{R}i = \{a + bi \mid a, b \in \mathbb{R}\},\$

where $i^2 = -1$. Later: $\mathbb{C} = \mathbb{R}[i]/(i^2 + 1 = 0)$, or just $\mathbb{R}[i]$.

Q: How are +, -, \times , and \div defined in \mathbb{C} ?

• $(a + bi) \pm (c + di) = (a \pm c) + (b \pm d)i$

•
$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

• $\frac{1}{a+bi} = \frac{1}{a^2+b^2}(a-bi)$

11/11