Lecture 04

Melissa Zhang
MAT 150A
$1 / 11$

Participation Slip

(1) Take a slip from the front of the room.
(2) Write your full name on the top left corner.
(3) You will write down your answer to some clearly marked "Participation Slip" questions during lecture.
(c) Hand in your slip at the end of class.

Reminder

- Participation slips won't be graded until Lecture 9.
- From Lecture 9 and onward, your participation slip will be graded for completion.
- A score of 15 (out of 20 lecture days) will receive full credit.

Notation Conventions

So far in this class we've used a couple different notations for the composition law / group operation in a group G :
(1) An abstract symbol, such as o.

- Permutations $p, q \in S_{n}$ are set maps $[n] \rightarrow[n]$. We can compose them in two ways: $p \circ q$ or $q \circ p$.
- When $n \geq 3, S_{n}$ is nonabelian, so in general $p \circ q \neq q \circ p$.
(2) Additive notation, where + is a commutative group operation:
- e.g. $(\mathbb{Z},+),(\mathbb{Z} / n \mathbb{Z},+),(n \mathbb{Z},+)$
- Use 0 to represent the additive identity.
(3) Multiplicative notation, where $b \circ a=b \cdot a$ is written $b a$:
- If $x, y \in \mathbb{R}^{\times}=(\mathbb{R}-\{0\}, \cdot)$, we write $x y$ as their product.
- If $p, q \in S_{n}$, we write $p q$ or $q p$. In general, $p q \neq q p$.
- Use 1 to represent the multiplicative identity.

Notation Conventions

Notation conventions summary
(1) Abstract symbol: $x \circ y, x \circ x^{-1}=x^{-1} \circ x=e$
(2) Additive notation when G is abelian: $x+y=y+x$, $x+(-x)=0$
(3) Multiplicative notation: $x y, x x^{-1}=x^{-1} x=1$

The Integers \mathbb{Z}, the Prototypical Ring

Observe the following facts about the integers \mathbb{Z} :
(1) $(\mathbb{Z},+)$ is an abelian group.
(2) There is a multiplication operation and $1 \in \mathbb{Z}$ is the multiplicative identity.

Definition of a ring $(A,+, \cdot)$

A ring is a set A equipped with two associative binary operations, + and \cdot, such that

- $(A,+)$ is an abelian group, with additive identity 0
- There is an element $1 \in A$ that is a multiplicative identity.

Note that

- . is not required to be commutative.
- Inverses under • are not required.

Examples of Rings

Definition of a ring $(A,+, \cdot)$

A ring is a set A equipped with two associative binary operations, + and \cdot, such that

- $(A,+)$ is an abelian group, with additive identity 0
- There is an element $1 \in A$ that is a multiplicative identity.

Examples of rings

- $(\mathbb{Z},+, \cdot),(\mathbb{R},+, \cdot),(\mathbb{Z} / 12 \mathbb{Z},+, \cdot)$
- $\mathbb{R}[x]$, polynomials in a variable x with coefficients in \mathbb{R}

Participation Slip

(1) What is $5 \cdot 4$ in $\mathbb{Z} / 12 \mathbb{Z}$?
(2) Find an element of $\mathbb{Z} / 12 \mathbb{Z}-\{0\}$ that is not invertible under \cdot.

the Prototypical Field

Start with the ring $\mathbb{Z}=(\mathbb{Z},+, \cdot)$.

- Only 1 and -1 are invertible in \mathbb{Z}. We say ± 1 are units in the ring \mathbb{Z}, because they are invertible (i.e. have an inverse) under .
- Note that • is commutative.

Participation Slip

What are the units (invertible elements under multiplication) in $\mathbb{Z} / 12 \mathbb{Z}$?

the Prototypical Field

Start with the ring $\mathbb{Z}=(\mathbb{Z},+, \cdot)$.

- Only 1 is invertible in \mathbb{Z}. We say 1 is a unit in the $\operatorname{ring} \mathbb{Z}$, because it is invertible under \cdot.
- Note that • is commutative.

Now expand the set of elements by declaring that inverses exist, for all elements of $\mathbb{Z}-\{0\}$:

- For $b \neq 0, b^{-1}$ now exists, and $b b^{-1}=b^{-1} b=1$, the multiplicative identity in the ring \mathbb{Z}
- For $a, b \in \mathbb{Z}, b \neq 0$, we can write $\frac{a}{b}:=a b^{-1}=b^{-1} a(a$ fraction).
Call this new larger set $\operatorname{Frac}(\mathbb{Z})$, the fraction field of \mathbb{Z}. What is $\operatorname{Frac}(\mathbb{Z})$ better known as?

The Rational Numbers \mathbb{Q}, the Prototypical Field

The rational numbers are defined by $\mathbb{Q}:=\operatorname{Frac}(\mathbb{Z})$.

Definition

A field is a ring $(\mathbb{F},+, \cdot)$ where

- addition $(+)$ and multiplication (\cdot) are both associative and commutative,
- and all nonzero elements $\mathbb{F}^{\times}:=\mathbb{F}-\{0\}$ are all units.

We refer to \mathbb{F}^{\times}as the units of \mathbb{F}.

- Less precisely, a field is a set where addition, subtraction, multiplication, and division are all well-defined.
- Alternatively, $(\mathbb{F},+, \cdot)$ is a field if $(\mathbb{F},+)$ and $\left(\mathbb{F}^{\times}, \cdot\right)$ are both abelian groups.

Examples of Fields

Definition

A field is a ring $(\mathbb{F},+, \cdot)$ where

- addition (+) and multiplication (.) are associative and commutative,
- and all nonzero elements $\mathbb{F}^{\times}:=\mathbb{F}-\{0\}$ are all units.

Examples of Fields

(1) $(\mathbb{Q},+, \cdot),(\mathbb{R},+, \cdot)$
(2) $(\mathbb{Z} / 2 \mathbb{Z},+, \cdot)$
(3) More generally, $(\mathbb{Z} / p \mathbb{Z},+, \cdot)$, where p is prime

The Complex Numbers \mathbb{C}

Define a new symbol i, and let $i^{2}=-1$. (Informally, " $i=\sqrt{-1}$.")

The Complex Numbers \mathbb{C}

The complex numbers, denoted \mathbb{C}, is the field

$$
\mathbb{R}+\mathbb{R} i=\{a+b i \mid a, b \in \mathbb{R}\}
$$

where $i^{2}=-1$. Later: $\mathbb{C}=\mathbb{R}[i] /\left(i^{2}+1=0\right)$, or just $\mathbb{R}[i]$.
Q: How are,,$+- \times$, and \div defined in \mathbb{C} ?

$$
\begin{aligned}
& (a+b i) \pm(c+d i)=(a \pm c)+(b \pm d) i \\
& (a+b i)(c+d i)=(a c-b d)+(a d+b c) i \\
& \frac{1}{a+b i}=\frac{1}{a^{2}+b^{2}}(a-b i)
\end{aligned}
$$

