Lecture 05

Melissa Zhang

MAT 150A

- Take a slip from the front of the room.
- **2** Write your full name on the top left corner.
- You will write down your answer to some clearly marked "Participation Slip" questions during lecture.
- Hand in your slip at the end of class.

Reminder

- Participation slips won't be graded until Lecture 9.
- From Lecture 9 and onward, your participation slip will be graded for completion.
- A score of 15 (out of 20 lecture days) will receive full credit.

A ring is a set A equipped with two associative binary operations, + and $\cdot,$ such that

- (A, +) is an abelian group, with additive identity 0
- There is an element $1 \in A$ that is a multiplicative identity.
- A field is a ring $(\mathbb{F}, +, \cdot)$ where
 - addition (+) and multiplication (·) are **both associative and commutative**,
 - \bullet and all nonzero elements $\mathbb{F}^{\times}:=\mathbb{F}-\{0\}$ are all units.

(Write summary on board.)

Define a new symbol *i*, and let $i^2 = -1$. (Informally, " $i = \sqrt{-1}$.")

The Complex Numbers $\mathbb C$

The *complex numbers*, denoted \mathbb{C} , is the field

 $\mathbb{R} + \mathbb{R}i = \{a + bi \mid a, b \in \mathbb{R}\},\$

where $i^2 = -1$. Later: $\mathbb{C} = \mathbb{R}[i]/(i^2 + 1 = 0)$, or just $\mathbb{R}[i]$.

Q: How are +, -, \times , and \div defined in \mathbb{C} ?

• $(a + bi) \pm (c + di) = (a \pm c) + (b \pm d)i$

•
$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

• $\frac{1}{a+bi} = \frac{1}{a^2+b^2}(a-bi)$

The Complex Numbers $\mathbb C$

$$\mathbb{C} = \mathbb{R} + \mathbb{R}i = \{a + bi \mid a, b \in \mathbb{R}\} = \mathbb{R}[i]/(i^2 + 1)$$

 $\bullet\ \pm,\cdot$ are defined analogously to polynomial operations

•
$$\frac{1}{a+bi} = \frac{1}{a^2+b^2}(a-bi)$$

Definition

Let $z = a + bi \in \mathbb{C}$.

- $\bar{z} = a bi$ is the **complex conjugate** of z.
 - Compare with the conjugate relationship between $1 + \sqrt{2}$ and $1 \sqrt{2}$.
- $|z| = \sqrt{a^2 + b^2} \in \mathbb{R}$ is the absolute value or modulus of $z \in \mathbb{C}$.
 - |z| is also the length of the vector z in the complex plane.
 - Check that $z\overline{z} = |z|^2$.

Circle group

Recall that $\mathbb{C}^{\times} = (\mathbb{C} - \{0\}, \cdot)$. The **circle group** S^1 is the subgroup of \mathbb{C}^{\times} given by the unit circle:

$$S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}.$$

We can view $\mathbb{Z}/4\mathbb{Z}$ as a subgroup of S^1 by representing it as the cyclic subgroup $\langle i \rangle$.

There is an extension of the complex numbers called the *Hamiltonians*, denoted \mathbb{H} .

Inside \mathbb{H} , there are three distinguished elements, $\mathbf{i}, \mathbf{j}, \mathbf{k}$, that behave similarly to $i \in \mathbb{C}$:

•
$$i^2 = j^2 = k^2 = -1$$

•
$$\mathbf{ij} = -\mathbf{ji} = \mathbf{k}, \mathbf{jk} = -\mathbf{kj} = i, \mathbf{ki} = -\mathbf{ik} = \mathbf{j}.$$

As a set $\mathbb{H} = \mathbb{R} + i\mathbb{R} + j\mathbb{R} + k\mathbb{R}$.

Q: Is \mathbb{H} a field?

A: No, because · is not commutative!

However, we can still define multiplicative inverses for \mathbb{H}^{\times} . This makes \mathbb{H} into a *division ring*, which we will not talk about again.

$$\mathbb{H} = \mathbb{R} + \mathbf{i}\mathbb{R} + \mathbf{j}\mathbb{R} + \mathbf{k}\mathbb{R}.$$

•
$$i^2 = j^2 = k^2 = -1$$

•
$$\mathbf{ij} = -\mathbf{ji} = \mathbf{k}, \mathbf{jk} = -\mathbf{kj} = i, \mathbf{ki} = -\mathbf{ik} = \mathbf{j}.$$

Quaternion group

The quaternion group H is the subgroup of \mathbb{H}^{\times} generated by **i** and **j**, subject to the relations above.

$$H = \{\pm \mathbf{1}, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\}.$$

Quaternion group

The quaternion group H is the subgroup of \mathbb{H}^{\times} generated by **i** and **j**, subject to the relations above.

 $H = \{\pm \mathbf{1}, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\}.$

We can represent *H* using 2×2 complex matrices:

$$\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$$
$$\mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Definition

Let \mathbb{F} be a *field*. A **vector space** V over \mathbb{F} is a set together with two laws of composition:

- **3** addition: $V \times V \rightarrow V$, written $(v, w) \mapsto v + w$ for $v, w \in V$
- **2** scalar multiplication by elements of the ground field: $\mathbb{F} \times V \to V$, written $(c, v) \mapsto cv$, for $c \in \mathbb{F}$ and $v \in V$.

These laws are required to satisfy the following axioms:

- (V, +) is an abelian group, with identity denoted **0**.
 - Note that this 0 is technically different from the 0 in $\mathbb{F}.$

•
$$1v = v$$
 for all $v \in V$

- associative law: (ab)v = a(bv) for all $a, b, \in \mathbb{F}$, $v \in V$
- distributive laws: (a + b)v = av + bv and a(v + w) = av + aw, for all $a, b \in \mathbb{F}$, $v, w \in V$.

A vector space V over \mathbb{F} is a set with addition (v + w) and scalar multiplication (cv).

Examples of vector spaces

- $0 V = \mathbb{F} \text{ over } \mathbb{F}$
 - \bullet e.g. $\mathbb{Q},\mathbb{R},\mathbb{C}...$

 $\ \, {\it O} \ \, V=M_{n\times n}({\mathbb F}), \ \, {\rm the \ set \ of} \ \, n\times n \ \, {\rm matrices \ \, with \ \, coefficients \ in \ \, } {\mathbb F}$

• While V was not a group under *matrix multiplication*, it certainly is a group under addition!

3 The set
$$\mathbb{F}^n = \underbrace{\mathbb{F} \times \mathbb{F} \times \ldots \times \mathbb{F}}_{n}$$
 over \mathbb{F}

- $\textcircled{\ } \mathbb{R}[x], \text{ the set of polynomials in } x \text{ with coefficients in } \mathbb{R}$
- **③** The set of continuous functions $\mathbb{R} \to \mathbb{R}$, over \mathbb{R}

Definition

- A **subspace** *W* of a vector space *V* over a field \mathbb{F} is a *nonempty* subset closed on the operations of addition and scalar multiplication.
- A subspace W is **proper** if it is not $\{0\} \subset V$ nor $V \subset V$.

Participation Slip

Consider the field $\mathbb{F}_p := (\mathbb{Z}/p\mathbb{Z}, +, \cdot).$

- Recall that $(\mathbb{Z}/p\mathbb{Z},+,\cdot)$ is a field if and only if $p\in\mathbb{N}$ is prime.
- How many elements are there in \mathbb{F}_p^2 ?
- **2** How many different *proper* subspaces of \mathbb{F}_p^2 are there?