Lecture 06

Melissa Zhang

MAT 150A

- Take a slip from the front of the room.
- **2** Write your full name on the top left corner.
- You will write down your answer to some clearly marked "Participation Slip" questions during lecture.
- Hand in your slip at the end of class.

Reminder

- Participation slips won't be graded until Lecture 9.
- From Lecture 9 and onward, your participation slip will be graded for completion.
- A score of 15 (out of 20 lecture days) will receive full credit.

So far we've been talking about algebraic **objects**: sets, groups, rings, fields, etc.

Now we will study morphisms between these objects, i.e.

structure-preserving maps between them.

Example: Finite-dimensional $\mathbb R$ Vector Spaces

- Objects: Finite-dimensional real vector spaces
- Morphisms: Given objects V, W, a morphism from V to W is a *linear map*

$$\phi: V \to W.$$

Linear maps preserve the structure of vector spaces:

•
$$\phi(\mathbf{0}_V) = \mathbf{0}_W$$

•
$$\phi(v_1 + v_2) = \phi(v_1) + \phi(v_2)$$

•
$$\phi(cv) = c\phi(v)$$

Let (S, \Box) and (T, \blacktriangle) be groups. A homomorphism

$$\varphi:(S,\Box) \to (T,\blacktriangle)$$

is a (set) map such that for all $a, b \in S$,

$$\varphi(a \Box b) = \varphi(a) \blacktriangle \varphi(b).$$

Let G, G' be groups, written in multiplicative notation. A **homomorphism**

$$\varphi: \mathbf{G} \to \mathbf{G}'$$

is a map from G to G' such that for all $a, b \in G$,

 $\varphi(ab) = \varphi(a)\varphi(b).$

Examples of homomorphisms

$$\bullet \quad \mathsf{det}: \operatorname{\textit{GL}}_n(\mathbb{R}) \to \mathbb{R}^{\times}$$

$$Sgn: S_n \to \{\pm 1\}$$

•
$$\varphi: \mathbb{Z}^+ o G$$
 where $\varphi(n) = a^n$ where a is a fixed element of G

$$\mathbf{O} \mid \cdot \mid : \mathbb{C}^{\times} \to \mathbb{R}^{\times}$$

Group Homomorphisms

Some important homomorphisms

• Let G, G' be groups. The trivial homomorphism is

$$egin{array}{ll} {c}: {G} o {G'} \ {g} \mapsto 1_{{G'}} \end{array}$$

2 Let G be a group. The **identity homomorphism** is

$$\mathsf{id}: G o G$$

 $g \mapsto g$

• Let H be a subgroup of G. The **inclusion map** is

$$i: H \hookrightarrow G$$

$$x \mapsto x$$

Proposition

Let $\varphi : G \to G'$ be a group homomorphism. a) If $a_1, a_2, \dots, a_k \in G$, then $\varphi(a_1 a_2 \cdots a_k) = \varphi(a_1)\varphi(a_2) \cdots \varphi(a_k)$. a) $\varphi(1_G) = 1_{G'}$ b) If $a \in G$, then $\varphi(a^{-1}) = \varphi(a)^{-1}$.

Kernel and Image

Let $\varphi: \mathcal{G} \to \mathcal{G}'$ be a group homomorphism.

Definition

 $\textcircled{0} The kernel of \varphi is$

$$\ker \varphi := \{ \textbf{\textit{a}} \in \textbf{\textit{G}} \mid \varphi(\textbf{\textit{a}}) = 1 \}.$$

2 The **image** of φ is

$$\mathsf{im}\, arphi := \{x \in G' \mid x = arphi(a) ext{ for some } a \in G\} =: arphi(G).$$

Participation Slip

- **Q** Prove that im φ is a subgroup of G'.
- **2** Prove that ker φ is a subgroup of *G*.

The kernel of the determinant homomorphism

$$\mathsf{det}:\mathit{GL}_n(\mathbb{R})\to\mathbb{R}^\times$$

is the **special linear group** $SL_n(\mathbb{R})$.

The kernel of the sign homomorphism

$$\operatorname{sgn}: S_n \to \{\pm 1\}$$

is called the **alternating group** A_n , i.e. the subgroup of all *even* permutations.

Let *H* be a subgroup of *G*, and let $a \in G$. Let aH denote the set

 $aH = \{g \in G \mid g = ah \text{ for some } h \in H\}.$

- This set is called a **left coset** of *H* in *G*, because the element *a* "left-multiplied" with *H*.
- The set of all left cosets of H in G is

 $\{bH \mid b \in G\}.$

Warning: The set of left cosets of H is not always a group! We'll come back to this.

Q : How do you eat corn on the cob?

Lecture 06

If $a, g \in G$, the element gag^{-1} is called the **conjugate of** a by g.

Definition

A subgroup N of G is a **normal subgroup** if for every $a \in N$, $g \in G$, the conjugate $gag^{-1} \in N$.

If $N \leq G$ is normal, we write $N \leq G$.

Example: Subgroups of abelian groups

If G is abelian, then any subgroup H is normal. Why?

When G is nonabelian, not every subgroup is necessarily normal.

Quotient Groups (first pass)

Fact (will prove later)

Let N be a normal subgroup of a group G. Then the set of left cosets of N in G, G/N, forms a group.