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Participation Slip

1 Take a slip from the front of the room.

2 Write your full name on the top left corner.

3 You will write down your answer to some clearly marked
“Participation Slip” questions during lecture.

4 Hand in your slip at the end of class.

Reminder

Participation slips won’t be graded until Lecture 9.

From Lecture 9 and onward, your participation slip will be
graded for completion.

A score of 15 (out of 20 lecture days) will receive full credit.
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Group Homomorphisms

A homomorphism φ : G → G ′ is a map from G to G ′ such that
for all a, b ∈ G ,

φ(ab) = φ(a)φ(b).

The kernel of φ is

kerφ := {a ∈ G | φ(a) = 1}.

The image of φ is

imφ := {x ∈ G ′ | x = φ(a) for some a ∈ G} =: φ(G ).
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Cosets

Let H ≤ G , and let a ∈ G .

If written in multiplicative notation, the left coset of H
containing a is

aH = {g = ah | h ∈ H}

If G is abelian and written in additive notation, the coset of H
containing a is

a+ H = {g = a+ h | h ∈ H}.
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Kernels and Cosets

Proposition

Let φ : G → G ′ be a homomorphism, and let a, b ∈ G . Let
K = kerφ. The following conditions are equivalent (TFAE):

φ(a) = φ(b)

a−1b ∈ K

b ∈ aK

bK = aK .

Corollary

A homomorphism φ : G → G ′ is injective (as a set map) if and only
if its kernel K is the trivial subgroup {1} in G .
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Equivalence Relations and Partitions

To better understand cosets, we need to recall the notations of
equivalence relations and partitions.

3Z 0 3 6 9 12 15 · · ·

1 + 3Z 1 4 7 10 13 16 · · ·

2 + 3Z 2 5 8 11 14 17 · · ·
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Partitions

A partition P of a set S is a subdivision of S into nonoverlapping,
nonempty sets:

Definition

Let I be an indexing set (e.g. [n],N, etc.).

A partition P of a set S is a collection P = {Pα}α∈I of subsets
of S such that

for all s ∈ S , s ∈ Pα for exactly one α ∈ I

In other words, S =
∐
α∈I

Pα, the disjoint union of the sets Pα.
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Equivalence Relations

Recall that a relation R on a set S is a subset of S × S .

Relations are more general than functions.

We usually write a ∼ b. A priori, this is different from saying
b ∼ a (since in general, (a, b) ̸= (b, a) in S × S).

Definition

An equivalence relation on a set S is a relation ∼ on elements of
S that is

1 reflexive: For all a, a ∼ a.

2 symmetric: If a ∼ b, then b ∼ a.

3 transitive: If a ∼ b and b ∼ c , then a ∼ c .
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Equivalence Relations

Definition

An equivalence relation on a set S is a relation ∼ on elements of
S that is

1 reflexive: For all a, a ∼ a.

2 symmetric: If a ∼ b, then b ∼ a.

3 transitive: If a ∼ b and b ∼ c , then a ∼ c .

Participation Slip

Let a, b be elements of a group G .
We say a is conjugate to b if there exists g ∈ G such that

b = gag−1.

Prove that conjugacy is an equivalence relation.
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Equivalence Relations and Partitions

Proposition

An equivalence relation on a set S determines a partition, and vice
versa. Why?

Definition

For every equivalence relation on a set S , there is a surjective map

π : S → S̄ a 7→ ā

that maps each element a ∈ S to its equivalence class ā. Here S̄

denotes the set of equivalence classes.
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Example: Z, 3Z, and Z/3Z
Define an equivalence relation on Z as follows:

m ∼ n iff m ≡ n mod 3.

0̄ = 3Z 0 3 6 9 12 15 · · ·

1̄ = 1 + 3Z 1 4 7 10 13 16 · · ·

2̄ = 2 + 3Z 2 5 8 11 14 17 · · ·

We view Z/3Z as the set {0̄, 1̄, 2̄}.

There is a surjective map (currently only a set map, but actually a

homomorphism)

π : Z → Z/3Z
n 7→ n̄.
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Cosets

Proposition

Let H ≤ G . The cosets of H form a partition of G .

Proof.

We will instead describe an equivalence relation on G , which
induces a partition of G by equivalence classes.
Let a ∼ b iff b = ah for some h ∈ H.

(Reflexivity) a = a1 and 1 ∈ H so a ∼ a.

(Symmetry) If a ∼ b, then b = ah for some h, so a = bh−1;
since H is a subgroup, h−1 ∈ H as well, so b ∼ a.

(Transitivity) If a ∼ b and b ∼ c , then there exist h, h′ such
that b = ah, c = bh′. Then c = bh′ = (ah)h′ = a(hh′) where
hh′ ∈ H (again because H is a subgroup), so a ∼ c .
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Cosets

Proposition

Let H ≤ G . The cardinality of each coset gH ∈ G/H is the same.

Proof.

The obvious map (g ·) : H → gH defines a bijection, because it has
an inverse (g−1·) : gH → H.
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