## Lecture 07

Melissa Zhang

MAT 150A



- Take a slip from the front of the room.
- **2** Write your full name on the top left corner.
- You will write down your answer to some clearly marked "Participation Slip" questions during lecture.
- Hand in your slip at the end of class.

### Reminder

- Participation slips won't be graded until Lecture 9.
- From Lecture 9 and onward, your participation slip will be graded for completion.
- A score of 15 (out of 20 lecture days) will receive full credit.

<ロ><□><□><□><□><□><=><=><=><=><=><=><=><<2/13

A homomorphism  $\varphi:G\to G'$  is a map from G to G' such that for all  $a,b\in G$ ,

$$\varphi(ab) = \varphi(a)\varphi(b).$$

The **kernel** of  $\varphi$  is

$$\ker \varphi := \{ a \in G \ | \ \varphi(a) = 1 \}.$$

The **image** of  $\varphi$  is

$$\operatorname{im} \varphi := \{x \in G' \mid x = \varphi(a) \text{ for some } a \in G\} =: \varphi(G).$$



Let  $H \leq G$ , and let  $a \in G$ .

• If written in multiplicative notation, the **left coset** of *H* containing *a* is

$$aH = \{g = ah \mid h \in H\}$$

• If G is abelian and written in additive notation, the coset of H containing a is

$$a+H=\{g=a+h\mid h\in H\}.$$

Let  $\varphi : G \to G'$  be a homomorphism, and let  $a, b \in G$ . Let  $K = \ker \varphi$ . The following conditions are equivalent (TFAE):

Lecture 07

<ロト 4日 ト 4 目 ト 4 目 ト 目 の 4 で 5/13

- $\varphi(a) = \varphi(b)$
- $a^{-1}b \in K$
- b ∈ aK
- bK = aK.

Let  $\varphi : G \to G'$  be a homomorphism, and let  $a, b \in G$ . Let  $K = \ker \varphi$ . The following conditions are equivalent (TFAE):

- $\varphi(a) = \varphi(b)$
- $a^{-1}b \in K$
- *b* ∈ *aK*
- bK = aK.

## Corollary

A homomorphism  $\varphi: G \to G'$  is *injective* (as a set map) if and only if its kernel K is the trivial subgroup  $\{1\}$  in G.

To better understand cosets, we need to recall the notations of **equivalence relations** and **partitions**.

| 3ℤ              | 0 | 3 | 6 | 9  | 12 | 15 |  |
|-----------------|---|---|---|----|----|----|--|
| $1+3\mathbb{Z}$ | 1 | 4 | 7 | 10 | 13 | 16 |  |
| $2+3\mathbb{Z}$ | 2 | 5 | 8 | 11 | 14 | 17 |  |

A **partition** P of a set S is a subdivision of S into nonoverlapping, nonempty sets:



A **partition** P of a set S is a subdivision of S into nonoverlapping, nonempty sets:

### Definition

Let I be an indexing set (e.g.  $[n], \mathbb{N}, \text{ etc.}$ ).

A partition P of a set S is a collection  $P = \{P_{\alpha}\}_{\alpha \in I}$  of subsets of S such that

for all  $s \in S$ ,  $s \in P_{\alpha}$  for exactly one  $\alpha \in I$ 

<ロ> <母> <母> <き> <き> <き> きのQで 7/

A **partition** P of a set S is a subdivision of S into nonoverlapping, nonempty sets:

#### Definition

Let I be an indexing set (e.g.  $[n], \mathbb{N}, \text{ etc.}$ ).

A partition P of a set S is a collection  $P = \{P_{\alpha}\}_{\alpha \in I}$  of subsets of S such that

for all 
$$s \in S$$
,  $s \in P_{\alpha}$  for exactly one  $\alpha \in I$ 

In other words,  $S = \prod_{\alpha \in I} P_{\alpha}$ , the **disjoint union** of the sets  $P_{\alpha}$ .

Recall that a **relation** R on a set S is a subset of  $S \times S$ .

- Relations are more general than functions.
- We usually write a ~ b. A priori, this is different from saying b ~ a (since in general, (a, b) ≠ (b, a) in S × S).

Lecture 07

<ロト (日) (日) (王) (王) (王) (13)

Recall that a **relation** R on a set S is a subset of  $S \times S$ .

- Relations are more general than functions.
- We usually write a ~ b. A priori, this is different from saying b ~ a (since in general, (a, b) ≠ (b, a) in S × S).

### Definition

An **equivalence relation** on a set S is a relation  $\sim$  on elements of S that is

Lecture 07

- **1** reflexive: For all a,  $a \sim a$ .
- **2** symmetric: If  $a \sim b$ , then  $b \sim a$ .
- **③ transitive**: If  $a \sim b$  and  $b \sim c$ , then  $a \sim c$ .

### Definition

An **equivalence relation** on a set S is a relation  $\sim$  on elements of S that is

- **1** reflexive: For all a,  $a \sim a$ .
- **2** symmetric: If  $a \sim b$ , then  $b \sim a$ .
- **③** transitive: If  $a \sim b$  and  $b \sim c$ , then  $a \sim c$ .

<ロ><
<p>・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

<

### Definition

An **equivalence relation** on a set S is a relation  $\sim$  on elements of S that is

- **1** reflexive: For all a,  $a \sim a$ .
- **2** symmetric: If  $a \sim b$ , then  $b \sim a$ .
- **()** transitive: If  $a \sim b$  and  $b \sim c$ , then  $a \sim c$ .

#### Participation Slip

Let a, b be elements of a group G. We say a is **conjugate to** b if there exists  $g \in G$  such that

$$b = gag^{-1}$$
.

Prove that **conjugacy** is an equivalence relation.

<ロ> <四> <ヨ> <ヨ> 三日:

9/

An equivalence relation on a set S determines a partition, and vice versa. Why?



 $< \square > < \square > < \square > < \equiv > < \equiv > < \equiv > = 9 < 0 / 13$ 

An equivalence relation on a set S determines a partition, and vice versa. Why?

#### Definition

For every equivalence relation on a set S, there is a surjective map

$$\pi: S \to \overline{S} \qquad a \mapsto \overline{a}$$

that maps each element  $a \in S$  to its equivalence class  $\bar{a}$ . Here  $\bar{S}$  denotes the set of equivalence classes.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うへの



Define an equivalence relation on  $\ensuremath{\mathbb{Z}}$  as follows:

 $m \sim n$  iff  $m \equiv n \mod 3$ .



Lecture 07

# Example: $\mathbb{Z}, 3\mathbb{Z}$ , and $\mathbb{Z}/3\mathbb{Z}$

Define an equivalence relation on  $\ensuremath{\mathbb{Z}}$  as follows:

 $m \sim n$  iff  $m \equiv n \mod 3$ .

| $\bar{0} = 3\mathbb{Z}$          | 0 | 3 | 6 | 9  | 12 | 15 |  |
|----------------------------------|---|---|---|----|----|----|--|
| $\overline{1} = 1 + 3\mathbb{Z}$ | 1 | 4 | 7 | 10 | 13 | 16 |  |
| $\bar{2} = 2 + 3\mathbb{Z}$      | 2 | 5 | 8 | 11 | 14 | 17 |  |



A B + ( E + ( E + E - ) ( C - 11/13
 )
 )

# Example: $\mathbb{Z}, 3\mathbb{Z}$ , and $\mathbb{Z}/3\mathbb{Z}$

Define an equivalence relation on  $\ensuremath{\mathbb{Z}}$  as follows:

 $m \sim n$  iff  $m \equiv n \mod 3$ .

| $\bar{0} = 3\mathbb{Z}$          | 0 | 3 | 6 | 9  | 12 | 15 |  |
|----------------------------------|---|---|---|----|----|----|--|
| $\overline{1} = 1 + 3\mathbb{Z}$ | 1 | 4 | 7 | 10 | 13 | 16 |  |
| $\bar{2} = 2 + 3\mathbb{Z}$      | 2 | 5 | 8 | 11 | 14 | 17 |  |

We view  $\mathbb{Z}/3\mathbb{Z}$  as the set  $\{\overline{0}, \overline{1}, \overline{2}\}$ .

# Example: $\mathbb{Z}, 3\mathbb{Z}, and \mathbb{Z}/3\mathbb{Z}$

Define an equivalence relation on  $\ensuremath{\mathbb{Z}}$  as follows:

 $m \sim n$  iff  $m \equiv n \mod 3$ .

| $\bar{0} = 3\mathbb{Z}$          | 0 | 3 | 6 | 9  | 12 | 15 |  |
|----------------------------------|---|---|---|----|----|----|--|
| $\overline{1} = 1 + 3\mathbb{Z}$ | 1 | 4 | 7 | 10 | 13 | 16 |  |
| $\bar{2} = 2 + 3\mathbb{Z}$      | 2 | 5 | 8 | 11 | 14 | 17 |  |

We view  $\mathbb{Z}/3\mathbb{Z}$  as the set  $\{\overline{0}, \overline{1}, \overline{2}\}$ .

There is a surjective map (currently only a set map, but actually a homomorphism)

$$\pi: \mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$$
$$n \mapsto \bar{n}.$$

11

Lecture 07

## Proposition

## Let $H \leq G$ . The cosets of H form a partition of G.



## Proposition

Let  $H \leq G$ . The cosets of H form a partition of G.

### Proof.

We will instead describe an equivalence relation on G, which induces a partition of G by equivalence classes.



## Proposition

Let  $H \leq G$ . The cosets of H form a partition of G.

## Proof.

We will instead describe an equivalence relation on G, which induces a partition of G by equivalence classes. Let  $a \sim b$  iff b = ah for some  $h \in H$ .



ヘロン 人間 とくほど 人間 とうほう

## Proposition

Let  $H \leq G$ . The cosets of H form a partition of G.

## Proof.

We will instead describe an equivalence relation on G, which induces a partition of G by equivalence classes. Let  $a \sim b$  iff b = ah for some  $h \in H$ .

• (Reflexivity) a = a1 and  $1 \in H$  so  $a \sim a$ .

(ロ) (四) (主) (主) (王)

## Proposition

Let  $H \leq G$ . The cosets of H form a partition of G.

## Proof.

We will instead describe an equivalence relation on G, which induces a partition of G by equivalence classes. Let  $a \sim b$  iff b = ah for some  $h \in H$ .

- (Reflexivity) a = a1 and  $1 \in H$  so  $a \sim a$ .
- (Symmetry) If a ~ b, then b = ah for some h, so a = bh<sup>-1</sup>; since H is a subgroup, h<sup>-1</sup> ∈ H as well, so b ~ a.

ヘロン 人間 とくほど 人間 とうほう

## Proposition

Let  $H \leq G$ . The cosets of H form a partition of G.

## Proof.

We will instead describe an equivalence relation on G, which induces a partition of G by equivalence classes. Let  $a \sim b$  iff b = ah for some  $h \in H$ .

- (Reflexivity) a = a1 and  $1 \in H$  so  $a \sim a$ .
- (Symmetry) If a ~ b, then b = ah for some h, so a = bh<sup>-1</sup>; since H is a subgroup, h<sup>-1</sup> ∈ H as well, so b ~ a.
- (Transitivity) If a ~ b and b ~ c, then there exist h, h' such that b = ah, c = bh'. Then c = bh' = (ah)h' = a(hh') where hh' ∈ H (again because H is a subgroup), so a ~ c.

(ロ) (四) (E) (E) (E)



Let  $H \leq G$ . The cardinality of each coset  $gH \in G/H$  is the same.





Let  $H \leq G$ . The cardinality of each coset  $gH \in G/H$  is the same.

#### Proof.

The obvious map  $(g \cdot) : H \to gH$  defines a bijection, because it has an inverse  $(g^{-1} \cdot) : gH \to H$ .





・ロ・・(型・・モ・・モ・ モー うくぐ)

13/13