Lecture 08

Melissa Zhang

MAT 150A

- Take a slip from the front of the room.
- Write your full name on the top left corner.
- You will write down your answer to some clearly marked "Participation Slip" questions during lecture.
- Hand in your slip at the end of class.

Reminder

- Participation will be graded starting next lecture (Lecture 9).
- A score of 15 (out of 20 lecture days) will receive full credit.

An **equivalence relation** on a set S is a relation \sim on elements of S that is

- **1** reflexive: For all $a, a \sim a$.
- **2** symmetric: If $a \sim b$, then $b \sim a$.
- **③** transitive: If $a \sim b$ and $b \sim c$, then $a \sim c$.

A **partition** P of a set S is a subdivision of S into nonoverlapping, nonempty sets.

A set map $f : S \to T$ defines an equivalence relation on S, indexed by the elements of the image of f, $im(f) \subset T$:

$$P_t = f^{-1}(t).$$

- Here $f^{-1}(t)$ is the inverse image or preimage of $t \in T$.
- If $t \notin im(f)$, then $f^{-1}(t) = \emptyset$.
- We sometimes also say $f^{-1}(t)$ is the *fiber* of f over $t \in T$.

Warning: Here f^{-1} is symbolic notation. If f is not bijective, there is no inverse function f^{-1} .

Recall

A subgroup N of G is **normal** if it is closed under conjugation by elements of G:

$$N \trianglelefteq G$$
 iff $gng^{-1} \in N$ for all $g \in G$.

Proposition

Let $\varphi:G\to G'$ be a homomorphism. Then the kernel $K=\ker\varphi$ is a normal subgroup.

Cycle notation

In *S*₅,

$$p = (1 \ 3 \ 4)(2 \ 5)$$

is the bijective set map $p: [5] \rightarrow [5]$ given by the following chart:

i	1	2	3	4	5
p(i)	3	5	4	1	2

There was some confusion about cycle notation conventions. Upon further inspection, my convention does in fact agree with the book's.

Re-definition

Any 2-cycle in S_n is called a **transposition**.

Example: Subgroup Structure of S_3

Participation Slip

- **O** Prove that A_3 is a normal subgroup.
- **2** Prove that $\{e, (1 2)\}$ is **not** a normal subgroup.

Example: Subgroup Structure of S_3

Question

What are the left cosets of $H = \{e, (1 \ 2)\}$?

We can define **some** groups by giving a set of generators and a set of relations the generators satisfy:

 $G = \langle \{\text{generators}\} \mid \{\text{relations}\} \rangle = \langle g_1, g_2, \dots, g_n \mid r_1, r_2, \dots, r_k \rangle.$

Each relation r is a **word** in the generators, indicating that we enforce the equation r = 1.

Let *N* be the largest normal subgroup of the **free group** $F = \langle g_1, g_2, \dots, g_n \rangle$ generated by all the relations r_i . Then $G \cong F/N$.

We will study quotient groups more carefully later.