Lecture 09

Melissa Zhang

MAT 150A

- Take a slip from the front of the room.
- Write your full name on the top left corner.
- You will write down your answer to some clearly marked "Participation Slip" questions during lecture.
- Hand in your slip at the end of class, in the pile according to the first letter of your surname.

Definition

The number of left cosets of a subgroup $H \leq G$ is the **index** of the subgroup, denoted [G : H].

The Counting Formula

For $H \leq G$, $|G| = |H| \cdot [G : H]$.

Participation Slip

Prove the Counting Formula.

Hint: You'll need a lemma we proved last week.

Finite Groups & the Counting Formula

Counting Formula: For $H \leq G$, $|G| = |H| \cdot [G : H]$.

Corollary

Let G be a finite group.

- (Lagrange's Theorem) If $H \leq G$, then |H| divides |G|.
- The order of an element $g \in G$ divides |G|.

Participation Slip

Let G be a group of prime order p. Prove that any non-identity element $a \in G$ generates the entire group, i.e. $G = \langle a \rangle$.

The above corollary to the Counting Formula **classifies** groups of prime order p.

They form a single isomorphism class, the class of C_p .

Finite Groups & the Counting Formula

Counting Formula: For $H \leq G$, $|G| = |H| \cdot [G : H]$.

Corollary

Let $\varphi: \mathcal{G} \to \mathcal{G}'$ be a homomorphism of finite groups.

- $[G:\ker \varphi] = |\operatorname{im} \varphi|$, and hence $|G| = |\ker \varphi| |\operatorname{im} \varphi|$
- $|\ker \varphi|$ divides |G|
- $|\operatorname{im} \varphi|$ divides both |G| and |G'|.

Question

Recall that the alternating group A_n is the kernel of the sign homomorphism

$$\mathsf{sgn}: S_n \to \{\pm 1\}.$$

What is the order of A_n ?

Proposition (Multiplicative Property of the Index)

Suppose we have a chain of subgroups of G

 $K \leq H \leq G$.

Then

$$[G:K] = [G:H][H:K].$$

The proof of this proposition is quite instructive. If there is some part of it you don't understand, go back and review the section on cosets.

- We've been talking about *left cosets*, but could equally well have proven all these theorems for *right cosets*.
- Before Exam 1 (next week!), we will talk about right cosets as a way to review the material.

When looking at a specific category of things, we care about (1) the objects themselves and (2) the maps between them, and oftentimes also (3) the notion of *equivalence* between the objects.

Sets

Two sets A and B are basically the same "equivalent" if they are in bijective correspondence,

i.e. there exists a bijection $\varphi: A \rightarrow B$.

- Then $\varphi^{-1}: B \to A$ is also a bijection.
- In fact, being "in bijection" is an equivalence relation on (any set of)^a sets.
- We call the equivalence classes "cardinality".

^aRussell's paradox + our definition of equivalence relation

Definition

An **isomorphism** is a bijective homomorphism.

This is the notion of <u>equivalence</u> among groups.

Examples

• exp :
$$(\mathbb{R}, +) \rightarrow (\mathbb{R}_{>0}, \cdot)$$

- How does this compare with the homomorphism exp : $\mathbb{R}^+ \to \mathbb{R}^{\times}?$
- Let $a \in G$ have infinite order. Then $n \mapsto a^n$ is an isomorphism $\mathbb{Z} \to \langle a \rangle$.
- Let \mathcal{P} be the subgroup of $GL_n(\mathbb{R})$ consisting of $n \times n$ permutation matrices. Then there is an isomorphism $S_n \to \mathcal{P}$ sending a permutation to its associated permutation matrix.

Lemma 2.6.2

If $\varphi: G \to G'$ is an isomorphism, then the inverse (set) map $\varphi^{-1}: G' \to G$ is also an isomorphism.

Two groups G, G' are **isomorphic** if there exists an isomorphism $\varphi: G \to G'$.

 They are functionally the same group, i.e. you can do your calculations with a ∈ G or φ(a) ∈ G'. The group laws work exactly the same way.

• This **does not** mean that they are literally the same group.

- In most contexts, the difference between equality (=) and equivalence (\cong) doesn't really matter, so we will casually say \mathcal{P} "is" S_n .
- ... But sometimes it does matter!

Conventions change, and differ between mathematical fields, generations of mathematicians, and between individual mathematicians.

- My notation: $G \cong G'$, $g \mapsto g'$
- Artin's notation: $G \approx G'$, $g \rightsquigarrow g'$

Definition

• An endomorphism is a homomorphism from G to itself.

• E.g. $2 \cdot : \mathbb{Z} \to \mathbb{Z}$

- An automorphism is an *isomorphism* from G to itself.
 - E.g. $2 \cdot : \mathbb{Z}/7\mathbb{Z} \to \mathbb{Z}/7\mathbb{Z}$

Another automorphism

Let G be a group, and fix $g \in G$. Then "conjugation by g" is an automorphism:

$$gullet: G o G$$

 $a \mapsto gag^{-1}$

Q: What are all the automorphisms of a cyclic group C_n ?

Hints:

- Let g be a generator.
- What if *n* is prime?

Q: What are all the automorphisms of the symmetric group S_3 ?

Hints:

- What are the obvious ones?
- What does an automorphism have to preserve about each element?