Lecture 11

Melissa Zhang
MAT 150A
$1 / 11$

Participation Slip

(1) Take a slip from the front of the room.
(2) Write your full name on the top left corner.
(3) You will write down your answer to some clearly marked "Participation Slip" questions during lecture.
(9) Hand in your slip at the end of class, in the pile according to the first letter of your surname.

Characterizing Direct Products

Composition in $A \times B:\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}, b_{1} b_{2}\right)$

The definition of $G \times G^{\prime}$ seems simple enough, but it is nontrivial to detect whether an arbitrary group has a product structure:

- i_{A}, i_{B} are inclusions: $i_{A}(a)=(a, 1), i_{B}(b)=(1, b)$
- p_{A}, p_{B} are projections: $p_{A}(a, b)=a, p_{B}(a, b)=b$.

Direct Products

Example

Given $C_{6}=\left\langle x \mid x^{6}=1\right\rangle$, it is not obvious that $C_{6} \cong C_{2} \times C_{3}$. To prove this, we need to either
(1) exhibit the product structure, i.e. check that we have the decomposition in the diagram
(2) if we have a guess of what the factor groups (subgroups) are, we can exhibit an explicit isomorphism.

Proposition 2.11.3

Let r and s be relatively prime integers. A cyclic group of order $r s$ is isomorphic to the (direct) product of a cyclic group of order r and a cyclic group of order s.

This is not true when r and s are not relatively prime.

Describing Product Groups

Let $H, K \leq G$, and let $f: H \times K \rightarrow G$ be the multiplication map in G, i.e. $f(h, k)=h k$. The image of f is the set

$$
H K=\{h k \mid h \in H, k \in K\} .
$$

Proposition 2.11.4

(a) f is injective if and only if $H \cap K=\{1\}$.
(b) f is a homomorphism $H \times K \rightarrow G$, if and only if elements of H commute with those of $K: h k=k h$ for all $h \in H, k \in K$.
(c) If $H \unlhd G$, then $H K \leq G$.
(d) f is an isomorphism $H \times K \rightarrow G$ if and only if $H \cap K=\{1\}$, $H K=G$, and both $H, K \unlhd G$.
$f: H \times K \rightarrow G,(h, k) \mapsto h k$.
(a) f is injective if and only if $H \cap K=\{1\}$.

Proof.

- (\Rightarrow, by contrapositive) If $H \cap K$ contains some $x \neq 1$, then $x^{-1} H$ as well, so $f\left(x^{-1}, x\right)=1=f(1,1)$, so f is not injective.
- (\Leftarrow) Suppose $H \cap K=\{1\}$. Let $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in H \times K$ such that $h_{1} k_{1}=h_{2} k_{2}$.
By multiplying on the left by h_{1}^{-1}, then on the right by k_{2}^{-1}, we have $k_{1} k_{2}^{-1}=h_{1}^{-1} h_{2}=1$.
Hence $h_{1}=h_{2}$ and $k_{1}=k_{2}$, so f is injective.
$f: H \times K \rightarrow G,(h, k) \mapsto h k$.
(b) f is a homomorphism $H \times K \rightarrow G$, if and only if elements of H commute with those of $K: h k=k h$ for all $h \in H, k \in K$.

Proof.

- Let $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in H \times K$.
- Firstly, $f\left(\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)\right)=f\left(\left(h_{1} h_{2}, k_{1} k_{2}\right)\right)=h_{1} h_{2} k_{1} k_{2}$.
- On the other hand, $f\left(h_{1}, k_{1}\right) f\left(h_{2} k_{2}\right)=\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)=h_{1} k_{1} h_{2} k_{2}$.
- f is a homomorphism iff $h_{1} h_{2} k_{1} k_{2}=h_{1} k_{1} h_{2} k_{2}$. By cancellation, this is true iff $h_{2} k_{1}=k_{1} h_{2}$.
- (k_{1} and h_{2} were arbitrary, so we have shown that $h k=k h$ for all $h \in H, k \in K$.
$f: H \times K \rightarrow G,(h, k) \mapsto h k$.
(c) If $H \unlhd G$, then $H K \leq G$.

Proof.

- Suppose $H \unlhd G$.
- (Identity) Since $1 \in H$ and $1 \in K, 1 \in H K$.
- (Closure) Since $H \unlhd G$, for any $k \in K \subset G, k h k^{-1}=h^{\prime} \in H$, i.e. $k h=h^{\prime} k$. Thus $k H=H k$, and therefore $K H=H K$.

Then $(H K)(H K)=H K H K=H H K K=H K$, so $H K$ is closed under multiplication (i.e. the group operation).

- (Inverse) Let $h k \in H K$. Then $(h k)^{-1}=k^{-1} h^{-1} \in K H=H K$ (see above), so HK is closed under inverses.
$f: H \times K \rightarrow G,(h, k) \mapsto h k$.
(d) f is an isomorphism $H \times K \rightarrow G$ if and only if (i) $H \cap K=\{1\}$, (ii) $H K=G$, and (iii) both $H, K \unlhd G$.

Proof.

(\Leftarrow) Suppose H and K satisfy the conditions (i), (ii), (iii).

- Since f is injective (i) and surjective (ii), f is bijective.
- It remains to show that f is a homomorphism; to show this, we use part (b): we just need to show that $h k=k h$ for all $h \in H, k \in K$.
- Since $K \unlhd G,[h, k]=\left(h k h^{-1}\right) k^{-1} \in K$.
- Since $H \unlhd G,[h, k]=h\left(k h^{-1} k^{-1}\right) \in H$.
- Since $H \cap K=\{1\},[h, k]=1$, i.e. $h k=k h$.
(\Rightarrow) Suppose f is an isomorphism. Verify the statements (i)-(iii) on the isomorphic group $H \times K$.

Proposition 2.11.4 (d)

$f: H \times K \rightarrow G,(h, k) \mapsto h k$, is an isomorphism if and only if $H \cap K=\{1\}, H K=G$, and both $H, K \unlhd G$.

Example: $\mathbb{Z} \times \mathbb{Z} \cong\langle a, b \mid[a, b]=1\rangle$

- Let $H=\langle a\rangle$ and $K=\langle b\rangle$.

Note that $\mathbb{Z} \cong H \cong K: n \mapsto a^{n}, n \mapsto b^{n}$.

- There is no relation of the form $a^{k}=b^{j}$ (or any combination of relations that implies this); thus $H \cap K=\{1\}$.
- To see that $H K=G$, we just need to show that $G \subseteq H K$. Any $g \in G$ is a word in a and b (and a^{-1}, b^{-1}). Since $[a, b]=1$, we can commute all the powers of a to the left. Thus $g=a^{k} b^{j}$ for some $k, j \in \mathbb{Z}$, and is therefore in $H K$.
- Since G is abelian, both $H, K \unlhd G$.

Practice

Exercise

Classify the groups of order 4.

11/11

