Lecture 11

Melissa Zhang

MAT 150A

- Take a slip from the front of the room.
- Write your full name on the top left corner.
- You will write down your answer to some clearly marked "Participation Slip" questions during lecture.
- Hand in your slip at the end of class, in the pile according to the first letter of your surname.

Composition in $A \times B$: $(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2)$

The definition of $G \times G'$ seems simple enough, but it is nontrivial to detect whether an arbitrary group has a **product structure**:

- i_A, i_B are inclusions: $i_A(a) = (a, 1), i_B(b) = (1, b)$
- p_A, p_B are **projections**: $p_A(a, b) = a, p_B(a, b) = b$.

Example

Given $C_6 = \langle x \mid x^6 = 1 \rangle$, it is not obvious that $C_6 \cong C_2 \times C_3$. To prove this, we need to either

- exhibit the product structure, i.e. check that we have the decomposition in the diagram
- If we have a guess of what the factor groups (subgroups) are, we can exhibit an explicit isomorphism.

Proposition 2.11.3

Let r and s be relatively prime integers. A cyclic group of order rs is isomorphic to the (direct) product of a cyclic group of order r and a cyclic group of order s.

This is **not** true when r and s are **not** relatively prime.

Let $H, K \leq G$, and let $f : H \times K \rightarrow G$ be the multiplication map in G, i.e. f(h, k) = hk. The image of f is the set

 $HK = \{hk \mid h \in H, k \in K\}.$

Proposition 2.11.4

- (a) f is injective if and only if $H \cap K = \{1\}$.
- (b) f is a homomorphism $H \times K \to G$, if and only if elements of H commute with those of K: hk = kh for all $h \in H, k \in K$.
- (c) If $H \trianglelefteq G$, then $HK \le G$.
- (d) f is an isomorphism $H \times K \to G$ if and only if $H \cap K = \{1\}$, HK = G, and both $H, K \leq G$.

 $\begin{aligned} f: H \times K &\to G, \ (h, k) \mapsto hk. \\ \text{(a) } f \text{ is injective if and only if } H \cap K = \{1\}. \end{aligned}$

Proof.

- (\Rightarrow , by contrapositive) If $H \cap K$ contains some $x \neq 1$, then $x^{-1}H$ as well, so $f(x^{-1}, x) = 1 = f(1, 1)$, so f is not injective.
- (\Leftarrow) Suppose $H \cap K = \{1\}$. Let $(h_1, k_1), (h_2, k_2) \in H \times K$ such that $h_1k_1 = h_2k_2$. By multiplying on the left by h_1^{-1} , then on the right by k_2^{-1} , we have $k_1k_2^{-1} = h_1^{-1}h_2 = 1$. Hence $h_1 = h_2$ and $k_1 = k_2$, so f is injective.

 $f: H \times K \rightarrow G, (h, k) \mapsto hk.$

(b) f is a homomorphism $H \times K \rightarrow G$, if and only if elements of H commute with those of K: hk = kh for all $h \in H, k \in K$.

Proof.

- Let $(h_1, k_1), (h_2, k_2) \in H \times K$.
- Firstly, $f((h_1, k_1)(h_2, k_2)) = f((h_1h_2, k_1k_2)) = h_1h_2k_1k_2$.
- On the other hand, $f(h_1, k_1)f(h_2k_2) = (h_1k_1)(h_2k_2) = h_1k_1h_2k_2.$
- f is a homomorphism iff $h_1h_2k_1k_2 = h_1k_1h_2k_2$. By cancellation, this is true iff $h_2k_1 = k_1h_2$.
- (k_1 and h_2 were arbitrary, so we have shown that hk = kh for all $h \in H, k \in K$.)

 $\begin{array}{l} f: H \times K \to G, \ (h,k) \mapsto hk. \\ \text{(c) If } H \trianglelefteq G, \ \text{then } HK \le G. \end{array}$

Proof.

- Suppose $H \trianglelefteq G$.
- (Identity) Since $1 \in H$ and $1 \in K$, $1 \in HK$.
- (Closure) Since H ≤ G, for any k ∈ K ⊂ G, khk⁻¹ = h' ∈ H, i.e. kh = h'k. Thus kH = Hk, and therefore KH = HK. Then (HK)(HK) = HKHK = HHKK = HKK, so HK is closed under multiplication (i.e. the group operation).
- (Inverse) Let hk ∈ HK. Then (hk)⁻¹ = k⁻¹h⁻¹ ∈ KH = HK (see above), so HK is closed under inverses.

 $f: H \times K \rightarrow G, (h, k) \mapsto hk.$

(d) f is an isomorphism $H \times K \to G$ if and only if (i) $H \cap K = \{1\}$, (ii) HK = G, and (iii) both $H, K \leq G$.

Proof.

(\Leftarrow) Suppose *H* and *K* satisfy the conditions (i), (ii), (iii).

- Since f is injective (i) and surjective (ii), f is bijective.
- It remains to show that f is a homomorphism; to show this, we use part (b): we just need to show that hk = kh for all h ∈ H, k ∈ K.
 - Since $K \trianglelefteq G$, $[h, k] = (hkh^{-1})k^{-1} \in K$.
 - Since $H \trianglelefteq G$, $[h, k] = h(kh^{-1}k^{-1}) \in H$.
 - Since $H \cap K = \{1\}$, [h, k] = 1, i.e. hk = kh.

(\Rightarrow) Suppose f is an isomorphism. Verify the statements (i)–(iii) on the isomorphic group $H \times K$.

Proposition 2.11.4 (d)

 $f: H \times K \to G$, $(h, k) \mapsto hk$, is an isomorphism if and only if $H \cap K = \{1\}$, HK = G, and both $H, K \trianglelefteq G$.

Example: $\mathbb{Z} \times \mathbb{Z} \cong \langle a, b \mid [a, b] = 1 \rangle$

• Let $H = \langle a \rangle$ and $K = \langle b \rangle$. Note that $\mathbb{Z} \cong H \cong K$: $n \mapsto a^n$, $n \mapsto b^n$.

- There is no relation of the form a^k = b^j (or any combination of relations that implies this); thus H ∩ K = {1}.
- To see that HK = G, we just need to show that $G \subseteq HK$. Any $g \in G$ is a word in a and b (and a^{-1}, b^{-1}). Since [a, b] = 1, we can commute all the powers of a to the left. Thus $g = a^k b^j$ for some $k, j \in \mathbb{Z}$, and is therefore in HK.
- Since G is abelian, both $H, K \trianglelefteq G$.

Exercise

Classify the groups of order 4.

Lecture 11