Lecture 16

Melissa Zhang

MAT 150A

Don't forget to pick up a participation slip!

The goal is to help you do HW05, which is very instructive.

- quotient groups example (§2.12)
- **2** conjugation classes in S_n (§7.5)
- \bigcirc the free group, generators and relations (§7.9, 7.10)

I will post my personal lecture notes on the class website this evening.

Example

Let G be the subgroup of upper triangular matrices $\begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \in GL_n(\mathbb{R})$. We can also write this set as $\begin{bmatrix} * & * \\ 0 & * \end{bmatrix}$.

For each of the following subsets, determine whether S is a subgroup and whether $S \trianglelefteq G$. If $S \trianglelefteq G$, identify the quotient group G/S.

- Participation Slip S is the subset defined by y = 0.
- Participation Slip S is the subset defined by z = 1.
- S is the subset defined by x = z.

Hint: Compute an arbitrary conjugation AXA^{-1} first, and then answer the questions.

Cycle Type of Permutations in S_n

Let p a permutation in S_n . The **cycle type** of p describes how the cycle notation for p partitions the set [n].

• For $p = (1 \ 3 \ 4)(2 \ 5) \in S_5$, the cycle type of p is "3,2". Sometimes written 3 + 2, or 2 + 3.

• For $p = (1 \ 3 \ 4)(2 \ 5) \in S_7$, the cycle type of p is "3,2,1,1".

We usually write the block sizes in decreasing order, as a convention.

Conjugation in S_n

Recall our convention for composing permutations in this class: Let $p = (1 \ 3 \ 4)(2 \ 5)$, $q = (1 \ 4 \ 5 \ 2)$. Then $q^{-1} = (2 \ 5 \ 4 \ 1)$.

start	12345
apply q^{-1}	25314
apply <i>p</i>	52431
apply q	21534

i.e. qpq^{-1} is the permutation function [5] \rightarrow [5] given by the following chart:

i	12345
$qpq^{-1}(i)$	21534

So the cycle notation for qpq^{-1} is $(1 \ 2)(3 \ 5 \ 4)$.

Proposition

Conjugation in S_n preserves cycle type.

Algorithm (§7.5 in the text)

- Map letters back to indices by using q^{-1} .
- 2 Permute the indices by *p*.
- **③** Map indices back to letters using q.

This algorithm shows that the cycle type does not change.

In the next two weeks, we'll be focusing on **group actions** and **symmetries**, and will make use of the generators and relations method of describing reasonably small groups.

The Free Group

The free group on *n* letters $S = \{s_1, s_2, ..., s_n\}$, denoted F_n or F_S , is the group consisting of all finite-length words in the generators s_i and their inverses.

(The multiplication operation is concatenation.)

Definition

Let G be a group. A (finite) group presentation $\langle S | R \rangle$ of G is the data consisting of

- finitely many generators $S = \{g_1, g_2, \dots, g_n\} \subset G$ ("letters") and
- finitely many relations R = {r₁, r₂, ..., r_k} (which are themselves "words" in the letters)

such that $G \cong F_S/N$, for N = the smallest normal subgroup of F_S containing the set R.

We can actually make this definition more generally, for sets S and R that are not finite, but those are less useful. The groups that have finite group presentations are called **finitely presented** or **finitely presentable**.