

Melissa Zhang

MAT 150A

Don't forget to pick up a participation slip!

1/13

- There is a class calendar available on our class website.
- Exam 2 is next Wednesday. This a cumulative exam. I will post a study guide with practice problems later this week.
- HW06 will be due after Exam 2; no homework due next week.

Recall: The group $O(2) = O(2, \mathbb{R})$ is the subgroup of $GL(2, \mathbb{R})$ consisting of matrices with orthonormal columns:

$$O(2) = \left\{ \begin{bmatrix} \mathbf{p_1} & \mathbf{p_2} \end{bmatrix} \mid \mathbf{p_i} \cdot \mathbf{p_j} = \delta_{ij} \right\}$$

• Here, δ_{ij} is the Kronecker delta function, given by

$$\delta_{ij} = egin{cases} 1 & ext{if } i=j \ 0 & ext{otherwise}. \end{cases}$$

Bonus: Semi-Direct Products (first pass)

O(2) is a **semi-direct product** of S^1 (rotation) and $\mathbb{Z}/2\mathbb{Z}$ (reflection):

$$O(2)=S^1\rtimes\mathbb{Z}/2\mathbb{Z}.$$

- The underlying set is still the Cartesian product of S^1 and $\mathbb{Z}/2\mathbb{Z}$.
- But multiplication is slightly different from multiplication in the direct product: you commute an element t ∈ Z/2Z past a rotation ρ ∈ S₁ at the cost of conjugating ρ by t:

This topic is not covered in Artin, so we will not say much more about it. But semi-direct products show up all the time, and it's helpful to know about them.

Conjugation \sim Change of Basis \sim Change of Perspective

Recall: Let A be a matrix in the "old" basis, and A' the matrix in the "new" basis. Then there is a <u>change-of-basis matrix</u> P such that

$$A' = P^{-1}AP$$

Participation Slip

Consider the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and the change-of-basis matrix P

corresponding to $\rho_{\pi/2}$.

- Sketch the unit circle $S \subset \mathbb{R}^2$.
- **2** Sketch the image of *S* under *A*.
- Sketch the image of S under $P^{-1}AP$.
- Ompare your answers for (b) and (c), and explain why I might have used the term change of perspective.

Let τ denote reflection across the e_1 -axis. (= r in the book)

Observation / Simple Computation

For any rotation $\rho = \rho_{\theta}$, we have $\tau \rho \tau = \rho^{-1}$:

$$\tau \rho = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c & -s \\ s & c \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \rho^{-1} \tau$$

Why does a mirror reverse left and right and not top and bottom?

Why does a mirror reverse left and right and not top and bottom?

$$\tau \rho = \rho^{-1} \tau$$

In this physical example,

- $\tau =$ reflect across the plane of the mirror
 - = transfer your consciousness to your mirror self

•
$$\rho = rotation$$
, e.g. by 45° CCW

We will prove this theorem:

Theorem 6.4.1

Let G be a finite subgroup of the orthogonal group $O(2) = O(2, \mathbb{R}) = O_2$ in the text. There is an integer n such that G is one of the following groups:

- C_n : the cyclic group of order *n* generated by the rotation ρ_{θ} , where $\theta = 2\pi/n$.
- D_n : the <u>dihedral group</u> of order 2n generated by ρ_{θ} and a reflection r' about a line ℓ through the origin.

Why are translations not relevant here?

Definition

A subgroup Γ of the additive group \mathbb{R}^+ is called **discrete** if there exists some $\varepsilon > 0$ such for all nonzero $c \in \Gamma$, $|c| \ge \varepsilon$.

If a set of points is *discrete*, you should think of them as isolated, i.e. if you zoom in enough, then only one point will show up on your screen at any one time.

Lemma 6.4.6

Let Γ be a discrete subgroup of \mathbb{R}^+ . Then either $\Gamma = \{0\}$, or Γ is the set $a\mathbb{Z}$ of integer multiples of some positive real number $a \in \mathbb{R}$.

The proof is analogous to the proof that subgroups of \mathbb{Z} are of the form $\{0\}$ or $a\mathbb{Z}$. Note that *a* can be irrational.

Lemma 6.4.6

Let Γ be a discrete subgroup of \mathbb{R}^+ . Then either $\Gamma = \{0\}$, or Γ is the set $a\mathbb{Z}$ of integer multiples of some positive real number $a \in \mathbb{R}$.

Proof. If $a, b \in \Gamma$ and $a \neq b$, then $|a - b| \ge \varepsilon$ (since $a - b \in \Gamma$).

- Suppose $\Gamma \neq \{0\}$. WTS $\Gamma = a\mathbb{Z}$ for some a > 0.
 - Then there exists a nonzero element b ∈ Γ, as well as its inverse −b ≠ 0. So Γ contains a positive element a'.
 - Any bounded interval contains finitely many elements of Γ .
 - Choose the smallest positive element a in the bounded interval [0, a']. Then a is also the smallest positive element of Γ.
- We now show $\Gamma = a\mathbb{Z}$.
 - $a \in \Gamma$, so $a\mathbb{Z} \leq \Gamma$.
 - Let $b \in \Gamma$; then b = ra for some $r \in \mathbb{R}$.
 - Write $r = m + r_0$, where $m \in \mathbb{Z}$, $r_0 \in [0, 1)$.
 - Since Γ is a group, $b' = b ma \in \Gamma$, and $b' = r_0 a$.
 - So $0 \le b' < a$. By minimality of a, b' = 0.
 - Hence $b = ma \in a\mathbb{Z}$, so $\Gamma \subset a\mathbb{Z}$, so $\Gamma = a\mathbb{Z}$.

Theorem 6.4.1

Let G be a finite subgroup of the orthogonal group $O(2) = O(2, \mathbb{R}) = O_2$ in the text. There is an integer n such that G is one of the following groups:

- C_n : the cyclic group of order *n* generated by the rotation ρ_{θ} , where $\theta = 2\pi/n$.
- **2** D_n : the <u>dihedral group</u> of order 2n generated by ρ_{θ} and a reflection r' about a line ℓ through the origin.

Theorem 6.4.1, abridged

If G is a finite subgroup of O(2), then it is either a C_n or D_n .

Proof. Recall that $O(2) = S^1 \rtimes \mathbb{Z}/2\mathbb{Z}$, and every element is of the form $\rho_{\theta}\tau$, where τ is reflection across the e_1 -axis.

Case 1: All $g \in G$ are rotations. It suffices to prove that G is cyclic.

- Let $\Gamma = \{ \alpha \in \mathbb{R} \mid \rho_{\alpha} \in G \}.$
- Then $\Gamma \in \mathbb{R}^+$, and $2\pi \in \Gamma$. Since *G* is finite, Γ is discrete, so $\Gamma = \alpha \mathbb{Z}$ for some $\alpha \in \mathbb{R}$.
- Then G consists of rotations through integer multiple of α , and there is some n such that $n\alpha = 2\pi$ (i.e. $\alpha = 2\pi/n$).

• So
$$G \cong C_n$$
.

Case 2: G contains a reflection r'.

- By a change of coordinates (i.e. change of basis), we may assume τ ∈ G.
 - In other words, perform a change of basis such that r' is taken to τ, by conjugating everything in G to an isomorphic subgroup in O(2).
- Let $H \leq G$ denote the subgroup consisting of rotations that are elements of G.
 - By Case 1, H is cyclic, and is generated by some ρ_{θ} , for some $\theta = 2\pi/n$.
 - Then the 2n products ρ^k_θ and ρ^k_θτ, for 0 ≤ k ≤ n − 1 are in G, so D_n ≤ G.
- To show $D_n = G$, it remains to show that any $g \in G$ is of this form.
 - If g is a rotation, then $g \in H$ already.
 - If g is a reflection, write it as ρ_αr for some ρ_α ∈ O(2). But since g and r are both in G, we also have ρ_α ∈ G.
 - So $g \in D_n$.