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Lecture 18

Melissa Zhang

MAT 150A

Don’t forget to pick up a participation slip!

Lecture 18



2/13

Reminders

There is a class calendar available on our class website.

Exam 2 is next Wednesday. This a cumulative exam. I will
post a study guide with practice problems later this week.

HW06 will be due after Exam 2; no homework due next week.
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The Orthogonal Group O(2)

Recall: The group O(2) = O(2,R) is the subgroup of GL(2,R)
consisting of matrices with orthonormal columns:

O(2) =
{[
p1 p2

]
| pi · pj = δij

}
Here, δij is the Kronecker delta function, given by

δij =

{
1 if i = j

0 otherwise.
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Bonus: Semi-Direct Products (first pass)

O(2) is a semi-direct product of S1 (rotation) and Z/2Z
(reflection):

O(2) = S1 ⋊ Z/2Z.
The underlying set is still the Cartesian product of S1 and
Z/2Z.
But multiplication is slightly different from multiplication in
the direct product: you commute an element t ∈ Z/2Z past a
rotation ρ ∈ S1 at the cost of conjugating ρ by t:

(ρ1, t1) · (ρ2, t2) ; ρ1t1ρ2t2

; ρ1φt1(ρ2)t1t2 ; (ρ1φt1(ρ2), t1t2)

This topic is not covered in Artin, so we will not say much more about it.

But semi-direct products show up all the time, and it’s helpful to know

about them.
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Conjugation ∼ Change of Basis ∼ Change of Perspective

Recall: Let A be a matrix in the “old” basis, and A′ the matrix in
the “new” basis. Then there is a change-of-basis matrix P such
that

A′ = P−1AP

Participation Slip

Consider the matrix A =

[
1 2
0 1

]
and the change-of-basis matrix P

corresponding to ρπ/2.

1 Sketch the unit circle S ⊂ R2.

2 Sketch the image of S under A.

3 Sketch the image of S under P−1AP.

4 Compare your answers for (b) and (c), and explain why I
might have used the term change of perspective.
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The Mirror World

Let τ denote reflection across the e1-axis. (= r in the book)

Observation / Simple Computation

For any rotation ρ = ρθ, we have τρτ = ρ−1:

τρ =

[
1 0
0 −1

] [
c −s
s c

]
=

[
c s
−s c

] [
1 0
0 −1

]
= ρ−1τ

Why does a mirror reverse left and right and not top and bottom?
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The Mirror World

Why does a mirror reverse left and right and not top and bottom?

τρ = ρ−1τ

In this physical example,

τ = reflect across the plane of the mirror
= transfer your consciousness to your mirror self

ρ = rotation, e.g. by 45◦ CCW
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Finite Subgroups of O(2)

We will prove this theorem:

Theorem 6.4.1

Let G be a finite subgroup of the orthogonal group
O(2) = O(2,R) = O2 in the text. There is an integer n such that G
is one of the following groups:

1 Cn: the cyclic group of order n generated by the rotation ρθ,
where θ = 2π/n.

2 Dn: the dihedral group of order 2n generated by ρθ and a
reflection r ′ about a line ℓ through the origin.

Why are translations not relevant here?
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Discrete Subgroups of R+

Definition

A subgroup Γ of the additive group R+ is called discrete if there
exists some ε > 0 such for all nonzero c ∈ Γ, |c | ≥ ε.

If a set of points is discrete, you should think of them as isolated, i.e. if

you zoom in enough, then only one point will show up on your screen at

any one time.

Lemma 6.4.6

Let Γ be a discrete subgroup of R+. Then either Γ = {0}, or Γ is
the set aZ of integer multiples of some positive real number a ∈ R.

The proof is analogous to the proof that subgroups of Z are of the
form {0} or aZ. Note that a can be irrational.
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Lemma 6.4.6

Let Γ be a discrete subgroup of R+. Then either Γ = {0}, or Γ is
the set aZ of integer multiples of some positive real number a ∈ R.

Proof. If a, b ∈ Γ and a ̸= b, then |a− b| ≥ ε (since a− b ∈ Γ).

Suppose Γ ̸= {0}. WTS Γ = aZ for some a > 0.

Then there exists a nonzero element b ∈ Γ, as well as its
inverse −b ̸= 0. So Γ contains a positive element a′.
Any bounded interval contains finitely many elements of Γ.
Choose the smallest positive element a in the bounded interval
[0, a′]. Then a is also the smallest positive element of Γ.

We now show Γ = aZ.
a ∈ Γ, so aZ ≤ Γ.
Let b ∈ Γ; then b = ra for some r ∈ R.
Write r = m + r0, where m ∈ Z, r0 ∈ [0, 1).
Since Γ is a group, b′ = b −ma ∈ Γ, and b′ = r0a.
So 0 ≤ b′ < a. By minimality of a, b′ = 0.
Hence b = ma ∈ aZ, so Γ ⊂ aZ, so Γ = aZ.

Lecture 18



11/13

Finite Subgroups of O(2)

Theorem 6.4.1

Let G be a finite subgroup of the orthogonal group
O(2) = O(2,R) = O2 in the text. There is an integer n such that G
is one of the following groups:

1 Cn: the cyclic group of order n generated by the rotation ρθ,
where θ = 2π/n.

2 Dn: the dihedral group of order 2n generated by ρθ and a
reflection r ′ about a line ℓ through the origin.
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Finite Subgroups of O(2)

Theorem 6.4.1, abridged

If G is a finite subgroup of O(2), then it is either a Cn or Dn.

Proof. Recall that O(2) = S1 ⋊ Z/2Z, and every element is of the form

ρθτ , where τ is reflection across the e1-axis.

Case 1: All g ∈ G are rotations. It suffices to prove that G is
cyclic.

Let Γ = {α ∈ R | ρα ∈ G}.
Then Γ ∈ R+, and 2π ∈ Γ. Since G is finite, Γ is discrete, so
Γ = αZ for some α ∈ R.
Then G consists of rotations through integer multiple of α,
and there is some n such that nα = 2π (i.e. α = 2π/n).

So G ∼= Cn.
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Case 2: G contains a reflection r ′.

By a change of coordinates (i.e. change of basis), we may
assume τ ∈ G .

In other words, perform a change of basis such that r ′ is taken
to τ , by conjugating everything in G to an isomorphic
subgroup in O(2).

Let H ≤ G denote the subgroup consisting of rotations that
are elements of G .

By Case 1, H is cyclic, and is generated by some ρθ, for some
θ = 2π/n.
Then the 2n products ρkθ and ρkθτ , for 0 ≤ k ≤ n − 1 are in G ,
so Dn ≤ G .

To show Dn = G , it remains to show that any g ∈ G is of this
form.

If g is a rotation, then g ∈ H already.
If g is a reflection, write it as ραr for some ρα ∈ O(2). But
since g and r are both in G , we also have ρα ∈ G .
So g ∈ Dn.
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