Lecture 18

Melissa Zhang
MAT 150A

Don't forget to pick up a participation slip!

Reminders

- There is a class calendar available on our class website.
- Exam 2 is next Wednesday. This a cumulative exam. I will post a study guide with practice problems later this week.
- HW06 will be due after Exam 2; no homework due next week.

The Orthogonal Group $O(2)$

Recall: The group $O(2)=O(2, \mathbb{R})$ is the subgroup of $G L(2, \mathbb{R})$ consisting of matrices with orthonormal columns:

$$
O(2)=\left\{\left.\left[\begin{array}{ll}
\mathbf{p}_{\mathbf{1}} & \mathbf{p}_{2}
\end{array}\right] \right\rvert\, \mathbf{p}_{\mathbf{i}} \cdot \mathbf{p}_{\mathbf{j}}=\delta_{i j}\right\}
$$

- Here, $\delta_{i j}$ is the Kronecker delta function, given by

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Bonus: Semi-Direct Products (first pass)

$O(2)$ is a semi-direct product of S^{1} (rotation) and $\mathbb{Z} / 2 \mathbb{Z}$ (reflection):

$$
O(2)=S^{1} \rtimes \mathbb{Z} / 2 \mathbb{Z} \text {. }
$$

- The underlying set is still the Cartesian product of S^{1} and $\mathbb{Z} / 2 \mathbb{Z}$.
- But multiplication is slightly different from multiplication in the direct product: you commute an element $t \in \mathbb{Z} / 2 \mathbb{Z}$ past a rotation $\rho \in S_{1}$ at the cost of conjugating ρ by t :

$$
\begin{aligned}
\left(\rho_{1}, t_{1}\right) \cdot\left(\rho_{2}, t_{2}\right) & \leadsto \rho_{1} t_{1} \rho_{2} t_{2} \\
& \leadsto \rho_{1} \varphi_{t_{1}}\left(\rho_{2}\right) t_{1} t_{2}
\end{aligned} \sim\left(\rho_{1} \varphi_{t_{1}}\left(\rho_{2}\right), t_{1} t_{2}\right)
$$

This topic is not covered in Artin, so we will not say much more about it. But semi-direct products show up all the time, and it's helpful to know about them.

Conjugation ~ Change of Basis \sim Change of Perspective

Recall: Let A be a matrix in the "old" basis, and A^{\prime} the matrix in the "new" basis. Then there is a change-of-basis matrix P such that

$$
A^{\prime}=P^{-1} A P
$$

Participation Slip

Consider the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and the change-of-basis matrix P corresponding to $\rho_{\pi / 2}$.
(1) Sketch the unit circle $S \subset \mathbb{R}^{2}$.
(2) Sketch the image of S under A.
(3) Sketch the image of S under $P^{-1} A P$.
(9) Compare your answers for (b) and (c), and explain why I might have used the term change of perspective.

The Mirror World

Let τ denote reflection across the e_{1}-axis. ($=r$ in the book)

Observation / Simple Computation

For any rotation $\rho=\rho_{\theta}$, we have $\tau \rho \tau=\rho^{-1}$:

$$
\tau \rho=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\rho^{-1} \tau
$$

Why does a mirror reverse left and right and not top and bottom?

The Mirror World

Why does a mirror reverse left and right and not top and bottom?

$$
\tau \rho=\rho^{-1} \tau
$$

In this physical example,

- $\tau=$ reflect across the plane of the mirror
= transfer your consciousness to your mirror self
- $\rho=$ rotation, e.g. by 45° CCW

Finite Subgroups of $O(2)$

We will prove this theorem:

Theorem 6.4.1

Let G be a finite subgroup of the orthogonal group $O(2)=O(2, \mathbb{R})=O_{2}$ in the text. There is an integer n such that G is one of the following groups:
(1) C_{n} : the cyclic group of order n generated by the rotation ρ_{θ}, where $\theta=2 \pi / n$.
(2) D_{n} : the dihedral group of order $2 n$ generated by ρ_{θ} and a reflection r^{\prime} about a line ℓ through the origin.

Why are translations not relevant here?

Discrete Subgroups of \mathbb{R}^{+}

Definition

A subgroup Γ of the additive group \mathbb{R}^{+}is called discrete if there exists some $\varepsilon>0$ such for all nonzero $c \in \Gamma,|c| \geq \varepsilon$.

If a set of points is discrete, you should think of them as isolated, i.e. if you zoom in enough, then only one point will show up on your screen at any one time.

Lemma 6.4.6

Let Γ be a discrete subgroup of \mathbb{R}^{+}. Then either $\Gamma=\{0\}$, or Γ is the set $a \mathbb{Z}$ of integer multiples of some positive real number $a \in \mathbb{R}$.

The proof is analogous to the proof that subgroups of \mathbb{Z} are of the form $\{0\}$ or $a \mathbb{Z}$. Note that a can be irrational.

Lemma 6.4.6

Let Γ be a discrete subgroup of \mathbb{R}^{+}. Then either $\Gamma=\{0\}$, or Γ is the set $a \mathbb{Z}$ of integer multiples of some positive real number $a \in \mathbb{R}$.

Proof. If $a, b \in \Gamma$ and $a \neq b$, then $|a-b| \geq \varepsilon$ (since $a-b \in \Gamma)$.

- Suppose $\Gamma \neq\{0\}$. WTS $\Gamma=a \mathbb{Z}$ for some $a>0$.
- Then there exists a nonzero element $b \in \Gamma$, as well as its inverse $-b \neq 0$. So Γ contains a positive element a^{\prime}.
- Any bounded interval contains finitely many elements of Γ.
- Choose the smallest positive element a in the bounded interval $\left[0, a^{\prime}\right]$. Then a is also the smallest positive element of Γ.
- We now show $\Gamma=a \mathbb{Z}$.
- $a \in \Gamma$, so $a \mathbb{Z} \leq \Gamma$.
- Let $b \in \Gamma$; then $b=r$ for some $r \in \mathbb{R}$.
- Write $r=m+r_{0}$, where $m \in \mathbb{Z}, r_{0} \in[0,1)$.
- Since Γ is a group, $b^{\prime}=b-m a \in \Gamma$, and $b^{\prime}=r_{0} a$.
- So $0 \leq b^{\prime}<a$. By minimality of $a, b^{\prime}=0$.
- Hence $b=m a \in a \mathbb{Z}$, so $\Gamma \subset a \mathbb{Z}$, so $\Gamma=a \mathbb{Z}$.

Finite Subgroups of $O(2)$

Theorem 6.4.1

Let G be a finite subgroup of the orthogonal group $O(2)=O(2, \mathbb{R})=O_{2}$ in the text. There is an integer n such that G is one of the following groups:
(1) C_{n} : the cyclic group of order n generated by the rotation ρ_{θ}, where $\theta=2 \pi / n$.
(2) D_{n} : the dihedral group of order $2 n$ generated by ρ_{θ} and a reflection r^{\prime} about a line ℓ through the origin.

Finite Subgroups of $O(2)$

Theorem 6.4.1, abridged

If G is a finite subgroup of $O(2)$, then it is either a C_{n} or D_{n}.
Proof. Recall that $O(2)=S^{1} \rtimes \mathbb{Z} / 2 \mathbb{Z}$, and every element is of the form $\rho_{\theta} \tau$, where τ is reflection across the e_{1}-axis.

Case 1: All $g \in G$ are rotations. It suffices to prove that G is cyclic.

- Let $\Gamma=\left\{\alpha \in \mathbb{R} \mid \rho_{\alpha} \in G\right\}$.
- Then $\Gamma \in \mathbb{R}^{+}$, and $2 \pi \in \Gamma$. Since G is finite, Γ is discrete, so $\Gamma=\alpha \mathbb{Z}$ for some $\alpha \in \mathbb{R}$.
- Then G consists of rotations through integer multiple of α, and there is some n such that $n \alpha=2 \pi$ (i.e. $\alpha=2 \pi / n$).
- So $G \cong C_{n}$.

Case 2: G contains a reflection r^{\prime}.

- By a change of coordinates (i.e. change of basis), we may assume $\tau \in G$.
- In other words, perform a change of basis such that r^{\prime} is taken to τ, by conjugating everything in G to an isomorphic subgroup in $O(2)$.
- Let $H \leq G$ denote the subgroup consisting of rotations that are elements of G.
- By Case $1, H$ is cyclic, and is generated by some ρ_{θ}, for some $\theta=2 \pi / n$.
- Then the $2 n$ products ρ_{θ}^{k} and $\rho_{\theta}^{k} \tau$, for $0 \leq k \leq n-1$ are in G, so $D_{n} \leq G$.
- To show $D_{n}=G$, it remains to show that any $g \in G$ is of this form.
- If g is a rotation, then $g \in H$ already.
- If g is a reflection, write it as $\rho_{\alpha} r$ for some $\rho_{\alpha} \in O(2)$. But since g and r are both in G, we also have $\rho_{\alpha} \in G$.
- So $g \in D_{n}$.

