Lecture 13
Review of Projectors Note range $=$ image, $=$ colspace in our case A matrix $P \in \mathbb{R}^{m \times n}$ (ie $P: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$) is a projector if $P^{2}=P$.

- For all $x \in \mathbb{R}^{m}, x-P_{x} \in$ null $(P): \quad P\left(x-P_{x}\right)=P_{x}-P^{2} x=P_{x}-P_{x}=0$
- If P is a pugector, then I-P is also a puejector:

$$
(I-P)^{2}=I^{2}-I P-P I+P^{2}=I-P-P+P=I-P .
$$

I-P is the complementary pongector to P.
the (a) range $(I-P)=$ mule (P)
(b) null ($I-P$) $=\operatorname{range}(P)$ Pf.
(a)

- null (P) range $(I-P)$:

Suppose $v \in$ nuke (P). Then $(I-P) V=V-P v=V \Rightarrow V \in$ range ($I-P$).

- $\operatorname{range}(I-P) \subset$ null (P) :

Suppose $v \in$ range (I-P). Then $\exists x \in \mathbb{R}^{m}$ such that $(I-P) x=V$

$$
\Rightarrow P V=P(I-P) x=P x-P x=0 \Rightarrow V \in \operatorname{null}(P) .
$$

(b) This follows from (a): use $P^{\prime}=I-P$. Then $I-P^{\prime}=I-(I-P)=P$.

Remoras

$$
\begin{aligned}
\operatorname{range}(P) \cap \operatorname{nule}(P)=\{0\} \Rightarrow & \operatorname{nuce}(P) \cap \operatorname{mule}(I-P)=\{0\} \\
& \operatorname{ragec}(P) \cap \operatorname{range}(I \cap P)=\{0\} .
\end{aligned}
$$

Note $P+(I-P)=I \quad \Rightarrow(P x)+((I-P) x)=x$ $\leadsto P$ and I-P really are complementary.
eg.

$$
P=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \quad I-P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
0 & 1
\end{array}\right]
$$

- Creel that $P^{2}=P,(I-P)^{2}=(I-P)$.

$$
\begin{aligned}
& \operatorname{rage}(P)=\operatorname{colspace}(P)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} \\
& \operatorname{nul}(P)=\operatorname{rargc}(I-P)=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Nope that $\mathbb{R}^{2}=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}+\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ but $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are not or tho anal.
den. A projector P is ofliogonal if range $P \perp$ null (P). eg. $P=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

11 Pis NOT an OAloganal matrix! Its not even invertible.

Thm A projector P is an orthogonal projector iff $P^{\top}=P$ (ie symmetric).
Pf E Let $V_{1} \in \operatorname{range}(P), V_{2} \in$ null (P).
Since $V, \in \operatorname{rage}(P), \exists x$ such that $P x=V_{1}$.
Then $V_{1} \cdot v_{2}=(P x) \cdot V_{2}=(P x)^{\top} V_{2}=x^{\top} P^{\top} V_{2}=x^{\top} P V_{2}=x^{\top} \overrightarrow{0}=0$. $\Rightarrow V_{1} \perp V_{2}$ indeed.

Omitted. (Harder)
(II) Reflection matrices "Householder transformations" Even 2 vectors of the same length, there is a "uflection" relating then:
if. on 2D: accost aline
In 3D: across a place

$$
\begin{aligned}
& A=\sum_{i} \lambda_{i} q_{i q} q_{T}^{T} \quad\left\{q q_{i}\right. \text { on base } \\
& \Rightarrow \text { given } x, A \text { is } \\
& x=\sum \alpha_{i} q_{i} \mapsto \sum_{\text {ididq. }}
\end{aligned}
$$

Note Across a subspace 1 -din lower than ambient spare. What is $x_{1} y^{\prime}$ 'r relation to this subspree? A: Same distance

Want.

5. $\quad P x=y$?

With $v=x-y, \quad v^{\top} v=(x-y)^{\top}(x-y)=\left(x^{\top}-y^{\top}\right)(x-y)$

$$
\begin{aligned}
& =x^{\top} x-y^{\top} x-x^{\top} y+y^{\top} y \\
& =2\left(x^{\top} x-x^{\top} y\right) \quad\|x\|_{2}=\left\|_{y}\right\|_{2} ; \operatorname{dot} \text { product }
\end{aligned}
$$

$$
\Rightarrow V^{\top} x=\left(x^{\top}-y^{\top}\right) x=x^{\top} x-y \top x=\frac{1}{2} V^{\top} V \quad \text { from alive }
$$

$$
\Rightarrow P x=x-\frac{2 v^{\top} x}{V^{\top} V} v=x-\frac{2\left(\frac{1}{2} v^{\top} v^{1}\right)^{1}}{y^{\top} V}=y \quad \text { indeed! }
$$

Now simplify by normalizing: $u=\frac{v}{\|v\|_{2}}$ (unit vector)

$$
P=I-\frac{2}{v^{\top} v} v^{\top}=I-2 u u^{\top}
$$

This unit vector u is the Householder vector \& we can compute $c t$ in MATLAB (yecill do this on H lw)

