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Reminder

Pretty please fill out the Course Evaluation!
(Due tomorrow, June 8th)



A perspective on linear algebra

Matrix A 2 Rm⇥n = m-by-n array:

Entry aij of A = coe�cient of ei in Aej :

·St

11(i): () -e; coesicient



3D arrays?

What if we had A 2 Rl⇥m⇥n? What would would this array mean?

What would entry aijk represent?

Aijk
=A([K)

Aijk =A Si]Sj][K] !



Example: Handwritten digits

Suppose we have a training set with n images, each 16⇥ 16 pixels,
manually classified into 10 classes

[0], [1], . . . , [8], [9].

I Hence each image is a 16⇥ 16 matrix, and we have n of these.

I Previously, we handled this by reshaping the matrix into a
long vector:

R16⇥16 ! R256

Key point
Using tensors, we can keep the image as a 2D array.



Terminology

Suppose we have a tensor

A 2 Rl⇥m⇥n.

I The tensor A is sometimes called a 3-mode array.

I The 3 “dimensions” of the array are called the modes.
I The dimensions 1 of A are l ,m, n.

I Just as you’d describe the dimensions of a cardboard box.

Note that a matrix is a 2-mode array using this terminology.

1in the colloquial sense

#



d -mode tensors?

For any d 2 N, we can define a d-mode tensor. After all, a
d-mode tensor is just a d-dimensional array:

-A
train at
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d -mode tensors?

The use of tensors in data analysis applications was pioneered by
researchers in psychometrics and chemometrics in the 1960s.

Examples

I d = 2 for our handwritten digit classification problem

I d = 5 for some facial recognition application

What is d for a color photo?

2 modes for pixels
I mode for rgb color values

=>d =3



Vector fields  tensor fields

In physics and mathematics, tensors show up all the time.

Vector field = 1-mode tensor field

-



Vector fields  tensor fields

A taste of Riemannian geometry:

Example: Riemann curvature tensor field R
Let TpS2 denote the tangent plane to S2 at a point p:
The Riemann curvature tensor Rp at point p is a 4-mode tensor:

Rp : TpS
2 ⇥ TpS

2 ⇥ TpS
2 ! TpS

2

Actually, this is (3, 1)-tensor field because there are 3 input vectors
and 1 output vector.

maslll:1) input (1+ 1 theor
1 output

A e1nxn => 2 tensor



Multilinear algebra

Back to 3-mode tensors:

A 2 Rl⇥m⇥n

A priori, let’s think of A as just a collection of coe�cients.

Coe�cients of what?

way
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Relation to tensor products

Example
If R2 = he1, e2i, then

R2 ⌦ R2 = he1 ⌦ e1, e1 ⌦ e2, e2 ⌦ e1, e2 ⌦ e2i

In general, if Rm = he1, e2, . . . , emi and Rn = he1, e2, . . . , emi, then

Rm ⌦R Rn = h{ei ⌦ ej}1im,1jni.

rat batt



Multilinear algebra

A 2 Rl⇥m⇥n

Suppose we treat the first two dimensions as input and the last
dimension as output. Then we think of A as a multilinear
transformation:

A : Rl ⇥ Rm ! Rn

I input: 2 vectors ~x 2 Rl , ~y 2 Rm

I output: 1 vector ~z 2 Rn



Why multi-linear?

Linear transformation A : R ! R:
For ↵ 2 R,

A(↵e1) = ↵A(e1).

In general, A(
P

ciei ) =
P

ciA(ei ).

Multilinear transformation A : R⇥ R ! R:

A(↵ e1,� e1) = ↵�A(e1, e1)

In other words, the transformation A is determined by one piece of
data: A(e1, e1) 2 R.
In general, if A is multilinear, then it’s really a transformation

A : Rl ⌦ Rm ! Rn

and is determined by what it does to the tensors
ei ⌦ ej 2 Rl ⌦ Rm, because all the coe�cients float to the front.



Explicit example

Consider the tensor
A : R2 ⇥ R2 ! R2

defined by

A(e1, e1) = e1 A(e1, e2) = e2

A(e2, e1) = e2 A(e2, e2) = 0.

How can we write down the tensor A as a 3D array?

Ijortynapsein



Explicit example

A(⇤, ⇤, 1) =

1 0
0 0

�
A(⇤, ⇤, 2) =


0 1
1 0

�

These eight coe�cients aijk (i , j , k 2 {1, 2}) completely describe
the tensor A, and now we can compute what the multilinear
transformation does to any pair of vectors v ,w 2 R2:

Example

Let v =


v1
v2

�
= v1e1 + v2e2 and w =


w1

w2

�
= w1e1 + w1e2. Then

A(v ,w) = v1w1A(e1, e1) + v1w2A(e1, e2)

+ v2w1A(e2, e1) + v2w2A(e2, e2)

= v1w1e1 + (v1w2 + v2w1)e2

=


v1w1

v1w2 + v2w1

�
.



Matrix decomposition  tensor decomposition

Now back to viewing A just as a tensor (not a transformation):

Matrix SVD can be generalized to tensors in multiple ways. One
such generalization is higher order SVD (HOSVD).

-



HOSVD
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HOSVD

Aijk =
lX

p=1

mX

q=1

nX

r=1

uipvjqwkrSpqr

The number (singular value) Spqr reflects the variation by the
combination of singular vectors up, vq, and wr .

Tensor decomposition
We’ve decomposed A into a sum of rank-1 tensors upvqwr !

We can now obtain a low-rank tensor approximation by choosing
to keep only the components upvqwr whose singular values Spqr

are significant or large.



HOSVD and handwritten digits

Example 8.4 in the text:
Given 131 handwritten “3” digits, where each image is a 16⇥ 16
matrix, compute the HOSVD of the 16⇥ 16⇥ 131 tensor to get
these singular values:



HOSVD and handwritten digits

These are the top three basis matrices for handwritten 3’s.



Good luck on finals, and thanks for a great quarter!

Pretty please fill out the Course Evaluation!
(Due tomorrow, June 8th!)

In fact, you can fill it out right meow!


