# Multilinear algebra, tensors, and tensor decompositions 

Melissa Zhang

MAT 167, UC Davis
Lecture 28

## Reminder

Pretty please fill out the Course Evaluation!
(Due tomorrow, June 8th)


## A perspective on linear algebra

Matrix $A \in \mathbb{R}^{m \times n}=m$-by-n array:


Entry $a_{i j}$ of $A=$ coefficient of $e_{i}$ in $A e_{j}$ :


## 3D arrays?

## $A_{i j k}=A[\underbrace{[i][j][k}]$

What if we had $\mathcal{A} \in \mathbb{R}^{\prime \times m \times n}$ ? What would would this array mean?

$$
A_{i j k}=A[i][j][k]
$$



What would entry $a_{i j k}$ represent?

## Example: Handwritten digits

Suppose we have a training set with $n$ images, each $16 \times 16$ pixels, manually classified into 10 classes

$$
[0],[1], \ldots,[8],[9] .
$$

- Hence each image is a $16 \times 16$ matrix, and we have $n$ of these.
- Previously, we handled this by reshaping the matrix into a long vector:

$$
\mathbb{R}^{16 \times 16} \rightarrow \mathbb{R}^{256}
$$

Key point
Using tensors, we can keep the image as a 2D array.

## Terminology

Suppose we have a tensor

$$
\mathcal{A} \in \mathbb{R}^{I \times m \times n}
$$



- The tensor $\mathcal{A}$ is sometimes called a 3-mode array.
- The 3 "dimensions" of the array are called the modes.
- The dimensions ${ }^{1}$ of $\mathcal{A}$ are $I, m, n$.
- Just as you'd describe the dimensions of a cardboard box.

Note that a matrix is a 2-mode array using this terminology.

## $d$-mode tensors?

For any $d \in \mathbb{N}$, we can define a $d$-mode tensor. After all, a $d$-mode tensor is just a $d$-dimensional array:

$A \in \mathbb{R}^{m \times n}$

$d$-mode tensors?

The use of tensors in data analysis applications was pioneered by researchers in psychometrics and chemometrics in the 1960s.

Examples

- $d=2$ for our handwritten digit classification problem
- $d=5$ for some facial recognition application

What is $d$ for a color photo?
2 modes for pixels
1 made for rgb color valves

$$
\Rightarrow d=3
$$

## Vector fields $\rightsquigarrow$ tensor fields

In physics and mathematics, tensors show up all the time.
Vector field $=1$-mode tensor field


Vector fields $\rightsquigarrow$ tensor fields

A taste of Riemannian geometry:
Example: Riemann curvature tensor field $R$
Let $T_{p} S^{2}$ denote the tangent plane to $S^{2}$ at a point $p$ :
The Riemann curvature tensor $R_{p}$ at point $p$ is a 4-mode tensor:

$$
R_{p}: T_{p} S^{2} \times T_{p} S^{2} \times T_{p} S^{2} \rightarrow T_{p} S^{2}
$$

Actually, this is $(3,1)$-tensor field because there are 3 input vectors and 1 output vector.
matrix:


$$
[]=[]
$$

1 input

$$
1 \text { output }
$$

( $1+1$ terser $)$
$A \in \mathbb{R}^{m \times n} \Rightarrow 2$ tensor

Multilinear algebra
Back to 3-mode tensors:

$$
\mathcal{A} \in \mathbb{R}^{\prime \times m \times n}
$$

A priory, let's think of $\mathcal{A}$ as just a collection of coefficients. Coefficients of what?
matrix
$a_{i j}$ is coefficient of

$$
A[J=[]
$$

$$
e_{i} \text { in } A e_{j}
$$

## Relation to tensor products

Example
If $\mathbb{R}^{2}=\left\langle e_{1}, e_{2}\right\rangle$, then

$$
\mathbb{R}^{2} \otimes \mathbb{R}^{2}=\left\langle e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}\right\rangle
$$


basis:


In general, if $\mathbb{R}^{m}=\left\langle e_{1}, e_{2}, \ldots, e_{m}\right\rangle$ and $\mathbb{R}^{n}=\left\langle e_{1}, e_{2}, \ldots, e_{m}\right\rangle$, then

$$
\mathbb{R}^{m} \otimes_{\mathbb{R}} \mathbb{R}^{n}=\left\langle\left\{e_{i} \otimes e_{j}\right\}_{1 \leq i \leq m, 1 \leq j \leq n}\right\rangle
$$

## Multilinear algebra

$$
\mathcal{A} \in \mathbb{R}^{I \times m \times n}
$$

Suppose we treat the first two dimensions as input and the last dimension as output. Then we think of $\mathcal{A}$ as a multilinear transformation:

$$
\mathcal{A}: \mathbb{R}^{\prime} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

- input: 2 vectors $\vec{x} \in \mathbb{R}^{\prime}, \vec{y} \in \mathbb{R}^{m}$
- output: 1 vector $\vec{z} \in \mathbb{R}^{n}$


## Why multi-linear?

Linear transformation $A: \mathbb{R} \rightarrow \mathbb{R}$ :
For $\alpha \in \mathbb{R}$,

$$
A\left(\alpha e_{1}\right)=\alpha A\left(e_{1}\right)
$$

In general, $A\left(\sum c_{i} e_{i}\right)=\sum c_{i} A\left(e_{i}\right)$.
Multilinear transformation $\mathcal{A}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ :

$$
\mathcal{A}\left(\alpha e_{1}, \beta e_{1}\right)=\alpha \beta \mathcal{A}\left(e_{1}, e_{1}\right)
$$

In other words, the transformation $\mathcal{A}$ is determined by one piece of data: $\mathcal{A}\left(e_{1}, e_{1}\right) \in \mathbb{R}$.
In general, if $\mathcal{A}$ is multilinear, then it's really a transformation

$$
\mathcal{A}: \mathbb{R}^{\prime} \otimes \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

and is determined by what it does to the tensors $e_{i} \otimes e_{j} \in \mathbb{R}^{\prime} \otimes \mathbb{R}^{m}$, because all the coefficients float to the front.

## Explicit example

Consider the tensor

$$
\mathcal{A}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

defined by

$$
\begin{array}{ll}
\mathcal{A}\left(e_{1}, e_{1}\right)=e_{1} & \mathcal{A}\left(e_{1}, e_{2}\right)=e_{2} \\
\mathcal{A}\left(e_{2}, e_{1}\right)=e_{2} & \mathcal{A}\left(e_{2}, e_{2}\right)=0 .
\end{array}
$$

How can we write down the tensor $\mathcal{A}$ as a ${ }_{0} 3 \mathrm{D}$ array?


## Explicit example

$$
\mathcal{A}(*, *, 1)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \mathcal{A}(*, *, 2)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

These eight coefficients $a_{i j k}(i, j, k \in\{1,2\})$ completely describe the tensor $\mathcal{A}$, and now we can compute what the multilinear transformation does to any pair of vectors $v, w \in \mathbb{R}^{2}$ :

Example
Let $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=v_{1} e_{1}+v_{2} e_{2}$ and $w=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=w_{1} e_{1}+w_{1} e_{2}$. Then

$$
\begin{aligned}
\mathcal{A}(v, w) & =v_{1} w_{1} \mathcal{A}\left(e_{1}, e_{1}\right)+v_{1} w_{2} \mathcal{A}\left(e_{1}, e_{2}\right) \\
& +v_{2} w_{1} \mathcal{A}\left(e_{2}, e_{1}\right)+v_{2} w_{2} \mathcal{A}\left(e_{2}, e_{2}\right) \\
& =v_{1} w_{1} e_{1}+\left(v_{1} w_{2}+v_{2} w_{1}\right) e_{2} \\
& =\left[\begin{array}{c}
v_{1} w_{1} \\
v_{1} w_{2}+v_{2} w_{1}
\end{array}\right] .
\end{aligned}
$$

## Matrix decomposition $\rightsquigarrow$ tensor decomposition

Now back to viewing $\mathcal{A}$ just as a tensor (not a transformation):


Matrix SVD can be generalized to tensors in multiple ways. One such generalization is higher order SVD (HOSVD).

## HOSVD



Figure 8.2. Visualization of the HOSVD.

## HOSVD

$$
\mathcal{A}_{i j k}=\sum_{p=1}^{\prime} \sum_{q=1}^{m} \sum_{r=1}^{n} u_{i p} v_{j q} w_{k r} \mathcal{S}_{p q r}
$$

The number (singular value) $\mathcal{S}_{p q r}$ reflects the variation by the combination of singular vectors $u_{p}, v_{q}$, and $w_{r}$.

## Tensor decomposition

We've decomposed $\mathcal{A}$ into a sum of rank-1 tensors $u_{p} v_{q} w_{r}$ !
We can now obtain a low-rank tensor approximation by choosing to keep only the components $u_{p} v_{q} w_{r}$ whose singular values $\mathcal{S}_{p q r}$ are significant or large.

## HOSVD and handwritten digits

Example 8.4 in the text:
Given 131 handwritten " 3 " digits, where each image is a $16 \times 16$ matrix, compute the HOSVD of the $16 \times 16 \times 131$ tensor to get these singular values:


Figure 8.3. The singular values in the digit (third) mode.

## HOSVD and handwritten digits



Figure 8.4. The top row shows the three matrices $A_{1}, A_{2}$, and $A_{3}$, and the bottom row shows the three slices of the core tensor, $\mathcal{S}(:,:, 1), \mathcal{S}(:,:, 2)$, and $\mathcal{S}(:,:, 3)$ (absolute values of the components).

These are the top three basis matrices for handwritten 3's.

Good luck on finals, and thanks for a great quarter!
Pretty please fill out the Course Evaluation!
(Due tomorrow, June 8th!)


In fact, you can fill it out right meow!

