Lecture 23
lecture 22 notes are on website, typed with full bibliography and tines.
Last week \& Monday:
The graded Euler characterstie of Khovanou Homology is the Jones Polynomial.

$$
\begin{aligned}
& \cdot K h(L)=\oplus K h^{i, j}(L) \quad g r_{n}=i, g r_{q}=j \\
& X(K h(L))=\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} K h^{i, j}(L)=\widetilde{V}(L)
\end{aligned}
$$

- We say
"Khovanov Homology is a categonification of the Jones polynomial"
- Actually, ever if we don't compute homology,
$x(K h(L))=x(C K h(D))=\tilde{V}(L) \quad$ We computed the Kauffman bracket from the same cube we used to compute KM!

Why? Gauss elimination of the differential cancels dimensions of a vector space in adjacent homological gradiups t in the save quentin grading.
Is there a categoritication of the Alexander polynomial? (for a knot K?) Yes. [Ozsväth-Szabó, Rasmussen ~ 2003] Knot Floe Homology. HFK (K)

This is constructed using very complicated geometry and arabpis, but there is a niue alporthm that computes $H F K(K)$ for Knot $K \subset S^{3}$ called Gird Homology.
Today - presenting knots using grid diagrams

- What are the "Reidervester moves" in this context?
- grid matrix + Alex polynomial

Planar grid diagrams
duets. A planar grid diagram \mathbb{G} is an $n \times n$ grid in the plane
(ie. The square $[0, n] \times[0, n]$ with grid lines along integer x, y coords) where n squares are marked X and n segerares are marked O, st.

- every row has one X and one O.
- every column has one X and one O
- No square is marked with both an X and $a_{n} O$.

Let $X=$ the collection of all the $X_{s}, \mathbb{Q}=$ aa all the Os.
The natural number $n=$ grid \# of G.

These grid diagrams can vecord certain knot diagrams. All LCS' have (infinitely many) grid diagrams:
eg.

$x+0$
$x+-x$
$0+$

x	$=$	0
$0+x$	1	
	0	$-x$

Rules

1. vertically travel from $X \rightarrow$ (1)
2. horizontally travel from $(1) \rightarrow X$
3. vertical are alwap passes over the horizontal acc.

Rok. Minimal grid $\#$ is an invariant of L that we know very little about!
Q. How one grid diagrams for the same L related? Gid moves.

There are many, buthere's an interesting one: What does R1 look hoe?

grid \# increased;
verve replaced the SW
cornu's XI with \times
ex. Draw a planar grid diagram for the F8

ex. Can you draw G for Hopt link (positively linked?)

Aside Note that (1) and X are gust permutations of the set $\{1, \ldots, n\}$. How many different gid diagrams of size non are there?

Toward Alexander polynomial
Winding Number: (review of intersection \#)

$$
\mathbb{R}^{2}-\{\vec{b}\}:
$$

winding of γ and and $*$

$$
\begin{aligned}
& =\omega_{\gamma}(*) \\
& =I(\rho, \gamma)=+1 .
\end{aligned}
$$

For a grid diagram \mathbb{G}, define the gro matrix $M(\mathbb{G})$ as follows:

$$
M_{i j}=t^{-\omega_{\tau}\left(p_{i j}\right)} \text { where } p_{i j}=\underbrace{(j-1, n-i)}_{\text {Annoying }} \text { lattice point }
$$

eg.

Annoying reasons b/c matrices are induced

$$
M_{i j}=M_{2,4}
$$

$$
p_{2,4}=(4-1,5-2)=(3,3)
$$

$W_{\vec{k}}\left(p_{2,3}\right)=0$.

https://www.wolframalpha.com/input?i=\(determinant+of+

Puop. $D_{\vec{L}_{+}}(t)-D_{L_{-}}(t)=\left(t^{1 / 2}-t^{-1 / 2}\right) D_{L_{0}}(t)$

