Reminders

- Final project due June 3rd at 11:59 pm
- Submit
 - Presentation \rightarrow Canvas dropbox
 - Expo article \rightarrow Gradescope
 - \blacktriangleright Outreach \rightarrow email; if it's a physical object, send me photos of it
- Please fill out the Course Evaluations before 6/8/23!
 - The math department uses this information to evaluate personnel and modify courses!
 - These evaluations are very important to my career as well as the TA's, as younger mathematicians.

Presentation schedule: F 6/2 and M 6/5

Date	Mathematician	Presentation Topic			
F 6/2	Camille Zeigler	TQFTs			
M 6/5	Run Wang	Low-complexity algorithms in			
		knot theory			
M 6/5	Sunny Zhou	Knot theory and machine learn-			
		ing			
M 6/5	Noppakan Sirikul	Gesture theory and conducting			
M 6/5	Lawrence Cheung	Knots and financial market sta-			
		bility			
M 6/5	Catherine Nguyen	Physical knots			
M 6/5	Alisa Gao	Knot invariants			
M 6/5	Eli Lenett	Alexander horned sphere			
M 6/5	Diego Martinez	Hyperbolic knots			

< 1 k

∃ →

Presentation schedule: W 6/7

Date	Mathematician	Presentation Topic		
W 6/7	Alice Li	Conway notation		
W 6/7	Yiwen Huang	Dowker notation		
W 6/7	Maximilien Gilli	Grid diagrams		
W 6/7	Vincent Hsu	Floer homology		
W 6/7	Wanzhu Zheng	Seifert surfaces		
W 6/7	Sam Kim	Knotted spheres		
W 6/7	Brian Kingsley	Knotted spheres		
W 6/7	Phyllis Law	Knotting in 5 dimensions		

< A >

돈에 돈

Presentation schedule: F 6/9

Date	Mathematician	Presentation Topic		
F 6/9	Melody Guo	Unknotting number bounds		
F 6/9	Naomi Ladenburg	Torus knots		
F 6/9	Anthony Ramirez	Braids		
F 6/9	Genesis Navarro	Braids		
F 6/9	Chris Soriano De Jesus	Knots and DNA		
F 6/9	Mohammed Dharhan	DNA recombination		
F 6/9	Rishika Roy	DNA and enzymes		
F 6/9	Kledi Bici	Knot theory and DNA		
F 6/9	Ignacio Salazar	Knots and DNA		

イロト イヨト イヨト

æ

A biased tour of applications of knot theory

Melissa Zhang

UC Davis

Lecture 26

∃ →

Some topics covered this quarter

- knot: $S^1 \hookrightarrow \mathbb{R}^3$ (or $S^3 = \mathbb{R}^3 \cup \infty$)
- knot diagrams, Reidemeister moves, writhe of diagrams, positive/negative crossings, connected sum
- surfaces, 3-genus and 4-genus, knot concordance group
- linking number, Seifert matrices
- knot polynomials: Jones, Kauffman bracket, Alexander, HOMFLY-PT
- Khovanov homology (TQFTS, homology-type invariants)
- grid diagrams, the knot group

There's much more to explore!

Important thing 1

This list, as well as the entire course, is from my point of view. We're all exploring a vast world with **little flashlights**!

knot theory \subset low-dimensional topology, geometric topology

classical (Newtonian) mechanics phase spaces, Lagrangian mechanics symplectic manifolds, Hamiltonian mechanics

- phase = (position, momentum) = (\vec{x}, \vec{p})
- \implies even-dimensional phase space
- symplectic manifold = 2n-dimensional manifold with a non-degenerate 2-form

Odd-dimensional version = contact manifolds

https://en.wikipedia.org/wiki/Contact_geometry

A Legendrian knot in the standard contact structure on S^3 :

https://services.math.duke.edu/~ng/knotgallery.html

Example

The unit tangent bundle of a manifold is a contact manifold.

• Car position
$$= \vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$$

• Car direction only (not speed) = $heta \in S^1$

https://services.math.duke.edu/~ng/knotgallery.html

11/17

 Melissa Zhang (UC Davis)
 A biased tour of applications of knot theory
 Lecture 26

Building 3- and 4-manifolds

https://www-users.cse.umn.edu/~akhmedov/akbulut.lec.pdf

(日)

э

Building 3- and 4-manifolds

http://www.selmanakbulut.com/papers/12.pdf

< 17 ▶

∃ →

Mapping class groups and dynamics

http://matematita.science.unitn.it/braids/summary.html

Melissa Zhang (UC Davis) A biased tour of applications of knot theory Lecture 26

Braided monoidal categories

The representation theory of various *Lie algebras* are packaged as *braided monoidal categories*.

https://math.stackexchange.com/questions/3590160/

			- * 臣 *	Ξ.	$\mathfrak{O}\mathfrak{Q}\mathfrak{C}$
Melissa Zhang (UC Davis)	A biased tour of applications of knot theory	Lectu	ire 26		15 / 17

More unsolicited advice

Important thing 2

Just because you have heard the term for a concept does **not** mean you understand it. **Work out hard examples and really understand them.**

https://medium.com/geekculture/

dunning-kruger-effect-and-journey-of-a-software-engineer-a35f2ff18f1a

More unsolicited advice

But all that doesn't matter!

- Figure out and **clarify for yourself** what your goals are. (This takes time, and will also change with time.)
- Make sure your actions align with your goals. (This is hard.)
- Have fun. (This may not always be possible, but ideal will guide you.)

Best advice I got in grad school:

Important thing 3

Do things out of excitement, not fear.

- one of my PhD advisors, Eli Grigsby.¹