MAT180 HW07

(ADD NAME)

Due 5/19/23 at 11:59 pm on Gradescope

Reminder. Your homework submission must be typed up in full sentences, with proper mathematical formatting.

Exercise 1

In this exercise, you'll compute Euler characteristic using ideas from Morse theory. Consider the following picture of Σ_2 , a closed, orientable surface of genus 2:

- (a) Draw picture of Σ_2 similar to the above, and then imagine it as a two-holed donut with glaze dripping down from the top. Identify the *critical points* on the surface, i.e. points where some particles of the glaze do not flow. Label these critical points with variable names c_1, c_2, \ldots
- (b) For each c_j , identify the number of *stable dimensions*, i.e. directions where glaze is flowing downward toward c_j , and also the number of *unstable dimensions*, i.e. directions where glaze is flowing downward away from c_j .

Note: "Directions" here is imprecise, because we really just want to choose two linearly independent directions at each c_j . The number if "directions" is obviously infinite!

(c) For a critical point c_j , the *index* of c_j , denoted index (c_j) , is the number of unstable dimensions at c_j . Write down the index of each critical point. Then, compute the Euler characteristic of Σ_2 using the formula

$$\chi(\Sigma_2) = \sum_i (-1)^i \#\{c_j : index(c_j) = i\}.$$

Check for yourself that this agrees with our previous definition of χ using genus.

Exercise 2

In class, we defined the mathematical object known as a group. Let g be an element in a group (G, \cdot) , where \cdot is the group's binary operation. We think of \cdot like multiplication; for example, we write g^3 for $g \cdot g \cdot g$, and g^{-2} for $g^{-1} \cdot g^{-1}$.

Definition. The *order* of g is

$$\operatorname{ord}(g) = \min\{n \in \mathbb{N} : g^n = e\},\$$

where $e \in G$ is the identity element. For example, $\operatorname{ord}(e) = 1$. If $g^n \neq e$ for all n, then $\operatorname{ord}(g) = \infty$.

- (a) Let K be an amphicheiral knot that is not slice. Prove that, in the knot concordance group, the equivalence class [K] of K is an order 2 element, i.e. $\operatorname{ord}([K]) = 2$.
- (b) Draw a sequence of sketches (i.e. a movie) depicting the *concordance* from the unknot to $4_1#4_1$. (Hint: You get to choose which diagrams of 4_1 to connect sum.) This shows that $[4_1] \cdot [4_1] = [U]$ in the knot concordance group.

Exercise 3

This exercise will be graded for effort. The goal is to prime you for a more topological construction that we will discuss soon in class.

In this exercise, you'll think about 2×2 matrices as morphisms of a simple category, and then build a bigger category out of it.

First, let's define a category \mathcal{C} where

- there is one object called $\mathbb{R}^2 \in Ob(\mathcal{C})$, and
- the only morphism set is $Mor_{\mathcal{C}}(\mathbb{R}^2, \mathbb{R}^2)$, the set of linear transformations from \mathbb{R}^2 to itself.

In order to get a handle on this category, let's choose the standard basis for \mathbb{R}^2 , $\{e_1, e_2\}$. Then, in terms of this basis, we can write

$$\operatorname{Mor}_{\mathcal{C}}(\mathbb{R}^2, \mathbb{R}^2) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\}.$$

We now define a new category $Mat(\mathcal{C})$, where the objects are *direct sums* of copies of objects of \mathcal{C} , which we now explain. Recall that we decided \mathbb{R}^2 is given as the span of the vectors e_1 and e_2 : we write

$$\mathbb{R}^2 = \langle e_1, e_2 \rangle,$$

knowing that $e_1 \perp e_2$. Imagine we now have two copies of \mathbb{R}^2 ,

$$\mathbb{R}^2_{(1)} = \langle e_1^{(1)}, e_2^{(1)} \rangle$$
 and $\mathbb{R}^2_{(2)} = \langle e_1^{(2)}, e_2^{(2)} \rangle.$

Then their direct sum is

$$\mathbb{R}^2_{(1)} \oplus \mathbb{R}^2_{(2)} = \langle e_1^{(1)}, e_2^{(1)}, e_1^{(2)}, e_2^{(2)} \rangle,$$

with the basis in that particular order, and where we imagine all four basis vectors as mutually orthogonal.

Then $\mathbb{R}^2_{(1)} \oplus \mathbb{R}^2_{(2)} \in Ob(Mat(\mathcal{C}))$. You can then direct sum more copies of \mathbb{R}^2 's to get vector spaces of any even dimension. But in this category, we really imagine all the copies of \mathbb{R}^2 (and direct sums of them) as different objects. For example, $\mathbb{R}^2_{(1)}$ and $\mathbb{R}^2_{(2)}$ are themselves objects in $Mat(\mathcal{C})$, and they are not the same object.

Now let's consider morphisms. For any 2×2 matrices A and B (i.e. $A, B \in Mor_{\mathcal{C}}(\mathbb{R}^2, \mathbb{R}^2)$), we can view A as a morphism $\mathbb{R}^2_{(1)} \to \mathbb{R}^2_{(1)}$, and B as a morphism $\mathbb{R}^2_{(1)} \to \mathbb{R}^2_{(2)}$. Then the block matrix

 $\begin{bmatrix} A & B \end{bmatrix}$

is a morphism $\mathbb{R}^2_{(1)} \oplus \mathbb{R}^2_{(2)} \to \mathbb{R}^2_{(1)}$, i.e.

$$\begin{bmatrix} A & B \end{bmatrix} \in \operatorname{Mor}_{\operatorname{Mat}(\mathcal{C})} \left(\mathbb{R}^2_{(1)} \oplus \mathbb{R}^2_{(2)}, \mathbb{R}^2_{(1)} \right).$$

- (a) Read the whole background to this problem; we will later need this example to talk about a more topological category constructed in this way. Then, write down one question you have about this.
- (b) Let $V = \mathbb{R}^2_{(1)} \oplus \mathbb{R}^2_{(2)}$. Describe the set $Mor_{Mat(\mathcal{C})}(V, V)$. What is the identity morphism?
- (c) Suppose U is 2-dimensional, V is 6-dimensional, and W is 4-dimensional. Let A be a morphism $U \to V$, and let B be a morphism $V \to W$. Describe what A and B look like, using A_1, A_2, \ldots and B_1, B_2, \ldots to denote 2×2 matrices in $Mor_{\mathcal{C}}(\mathbb{R}^2, \mathbb{R}^2)$.
- (d) Write down the composition $B \circ A \in \operatorname{Mor}_{\operatorname{Mat}(\mathcal{C})}(U, W)$ is, in terms the matrices A_i, B_i you used in the previous part.