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Abstract. These are expository lecture notes from a graduate topics course taught by the author on
Khovanov homology and related invariants. Major topics include the Jones polynomial, Khovanov homol-

ogy, Bar-Natan’s cobordism category, applications of Khovanov homology, some spectral sequences, Kho-
vanov stable homotopy type, and skein lasagna modules. Topological and algebraic exposition are sprinkled

throughout as needed.
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1. Introduction

These are lecture notes from a graduate topics course (MAT280) on Khovanov homology and related
invariants I taught at UC Davis in Fall Quarter of 2024.

Goal. The goal of the course was to expose a diverse group of algebra, topology, and combinatorics graduate
students to some of the most impactful ideas from Khovanov homology. As such, we covered some requisite
material quite quickly, opting for more intuitive explanations of auxiliary concepts, rather than formal
treatments.

Audience. Students taking the course were required to be familiar with homological algebra (MAT250) but
not necessarily with low-dimensional topology. As such, I included some exposition on topological concepts
when needed, but at othe times also discussed advanced topology topics without exposition.

Tone. The casual tone of these notes are similar to the style of my handwritten notes from previous courses,
which received positive feedback from students. Throughout, you may find colored text:

• Additional mathematical commentary is written in this color.
• Warnings look like this.
• Occasional other comments from me are written in this color. (These include organizational notes,
general encouragement, life advice, etc.)

• (add: This indicates that I would like to add something in a future version of these notes.)

Evolution. There are likely still numerous typos in these notes. If you find any and would like to let me
know, please email me. I will post the most recent version somewhere on my personal website: https:

//www.melissa-zhang.com.

Homotopy theorist? If you’re a homotopy theorist visiting these notes, you should probably start with
looking at Sections 3.1 and 7.5. This might be all that you need.

Acknowledgements. I would like to thank the students, both registered and those just sitting in, in my
MAT280 course. Your persistent engagement, enthusiasm in lectures, and pertinent questions helped me
clarify my explanations in these notes. I would also in particular like to thank Jake Quinn and Daniel Qin
for finding many typos in the notes, and Ian Sullivan for teaching the final lecture of the course while I was
traveling.

2. Knots and Topology

2.1. Knots and links. A knot is sometimes defined as a smooth embedding S1 ↪→ S3.
Notice that we can

• reparametrize the embedding, preserving the image setwise
• perform an ambient isotopy on the knot (‘isotop’ the knot)

https://www.melissa-zhang.com
https://www.melissa-zhang.com
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Definition 2.1.1. Let K,K ′ : S1 ↪→ S3 be two smooth embeddings. We say K and K ′ are (smoothly,
ambiently) isotopic if there exists a smooth family of diffeomorphisms

{φt : S
3 → S3}t∈[0,1]

such that φ0 = id and φ(1) ◦K = K ′.

Remark 2.1.2. Convince yourself of the following:

(1) “Ambiently isotopic” is an equivalence relation. The equivalence classes are called isotopy classes of
knots.

(2) In other words, an ambient isotopy smoothly morphs the embedding K into the embedding K ′,
through a family of diffeomorphisms of S3.

(3) An order-preserving reparametrization is an ambient isotopy.

Remark 2.1.3. In practice, when I say knot, I’m probably referring to either (1) the image of the knot in
S3 or (2) an entire isotopy class.

Example 2.1.4. ‘The’ unknot U is the equivalence class of the standard embedding S1 ↪→ R2 ↪→ R3 ↪→ S3.

Definition 2.1.5. Any diffeomorphic copy of S1 can have two possible orientations. The orientation of a
knot is given by the direction dK

dθ .
1

Definition 2.1.6. The reverse Kr (also denoted by K̄) of a knot K is the2 knot obtained by precomposing
K with an order-reversing diffeomorphism ρ : [0, 1]→ [0, 1].

Let τ be an orientation-reversing diffeomorphism of S3. The mirror of a knot K is the knotm(K) = τ ◦K.

Remark 2.1.7. An unoriented knot is just the knot after you forget about the orientation. You can think
of this as the union of the isotopy classes of K and K̄.

Exercise 2.1.8. First observe that the orientation of S3 does not reverse under isotopy.
Prove that

• In general, m(K) is not necessarily isotopic to K, even if we treat them as unoriented knots. You
can prove this via a (counter)example. Proving this directly is hard. Use the Jones polynomial,
introduced in Section 2.3.

• In general, Kr is not necessarily isotopic to K. There is no general algorithm for determining when
K ̸∼ Kr! For this problem, do a search online and see if you can an example in the literature, as
well as the relevant terms for describing this kind of symmetry.

Then, find examples of knots K that do happen to satisfy the following, and exhibit an explicit isotopy:

• K ∼ Kr

• K ∼ m(K)

Diagrammatically exhibit the isotopy by applying Reidemeister moves; see Section 2.2. If there’s an obvious
part of the isotopy that’s easy to describe but takes a lot of Reidemeister moves, you can just note what
you’re doing between two pictures.

Exercise 2.1.9. (Important) A link with ℓ ∈ Z≥0 components is a smooth embedding

L :

ℓ∐
i=1

S1 ↪→ S3

The link with zero components is called the empty link. The ith component is the embedding of the ith copy
of S1 into S3.

All of the definitions above can be generalized to links. Write down definitions for the following:

(1) oriented link L = (L, o) If we want to be explicit about the orientation of a link, we use the letter o
for the orientation information.

(2) unoriented (isotopy class of) L
(3) m(L), the mirror of a link L
(4) Lr, the reverse of an oriented link (L, o)

1This is terrible notation and should not ever appear again, because of how we use the term ‘knot’; see Remark 2.1.3.
2By using the article ‘the’, I’m using the term ‘knot’ in the sense of Remark 2.1.3 (2).
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How many orientations does a link with ℓ components have?

Remark 2.1.10. There are also other categories of links, such as topological links and wild links. We won’t
talk about these until, maybe, far later in the course.

2.2. Link diagrams and Reidemeister moves. We will now start abusing notation and language without
comment, per Remark 2.1.3.

We’ve so far been implicitly using link diagrams to draw links. More formally, a link diagram is a compact
projection of a representative of a link L onto the xy-plane such that the only intersections are transverse
double points.

For example, here are some bad singularities:

Theorem 2.2.1 (Reidemeister, 1930s). If D and D′ are two diagrams of the same link, then they are related
by a finite sequence of the following moves:

(R1)

(R2)

(R3)

Remark 2.2.2. (1) These are local pictures. You can rotate them.
(2) Note that there are technically many cases within each ‘move’, if you consider all the possible

orientations of the interacting strands in these local pictures. This is important when producing
invariants for oriented links.

(3) If D and D′ are diagrams for the same link, then we will sometimes write D ∼ D′. In other words,
“there exists a sequence of Reidemeister moves between” is an equivalence relations on the set of
link diagrams.

Exercise 2.2.3. (Unimportant) Explain why we don’t need to include the following local move:
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Definition 2.2.4. A link invariant F valued in a category C is a machine that

• takes in a link diagram D
• and outputs F (D) ∈ Ob(C)

such that
D ∼ D′ =⇒ F (D) = F (D′).

Remark 2.2.5. Note that a link invariant is not necessarily a functor. We will define the categories Link
and LinkDiag, and define functorial link invariants later.

2.3. Jones polynomial via skein relation. Khovanov homology is a categorical lift of the Jones polyno-
mial, so we will focus on this invariant first.

Remark 2.3.1. The first polynomial invariant of links was the Alexander polynomial, introduced in the
1920s. We will not discuss the Alexander polynomial until needed later.

The Jones polynomial was discovered by Vaughan Jones in the 1980s, and arose from his work in statistical
mechanics [Jon85]. We will not study the original definition of his invariant, but you are welcome to look
into it if it interests you. Perhaps a final project idea?

Definition 2.3.2. (/ Theorem / Algorithm / Conventions) The Jones polynomial is a link invariant
valued in Laurent polynomials Z[q, q−1] that is uniquely determined by the following recursion:

• base case: J(#) = 1
• skein relation: q−2J(L+)− q2J(L−) = (q−1 − q)J(L0) where

Remark 2.3.3. The diagrams for L+, L−, and L0 above show a positive crossing, a negative crossing, and
an oriented resolution, respectively. The singularity at the crossing can be resolved in two ways; L0 is the
only resolution that maintains the orientation of all the strands.

Remark 2.3.4. In class, we essentially used Jones’ conventions; these produce a Laurent polynomial in the
variable

√
t:

• base case: V (#) = 1
• skein relation: t−1V (L+)− tV (L−) = (t1/2 − t−1/2)V (L0).

If you look at a database of Jones polynomials, you’ll likely find this convention used.
For the purposes of this course, we will stick with Khovanov’s original conventions for the first few weeks

of class.

Example 2.3.5. Here we use the skein relation to compute the Jones polynomial (with the conventions set
in Definition 2.3.2) of the unlink of two components, ##.
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q−2 · 1− q2 · 1 = (q−1 − q)J(##)

J(##) =
q2 − q−2

q − q−1
= q + q−1.

Exercise 2.3.6. Compute the Jones polynomials of the following links:

(1) (positively linked) Hopf link
(2) right-handed trefoil

Exercise 2.3.7. (Important)

(1) Prove that for any link L, J(L) = J(Lr).
(2) Let K1 and K2 be knots, and let K1#K2 denote their connected sum3:

Prove that J(K1#K2) = J(K1)J(K2). What is J(K1 ⊔K2)?

Exercise 2.3.8. (a) Show why the Jones polynomial is invariant under an R1 move.
(b) Prove that for any link L, J(#L) = (q + q−1)J(L).

Question 2.3.9. (Open) Does the Jones polynomial detect the unknot U? In other words, if J(D) = 1, is
D necessarily a diagram for the unknot?

2.4. Jones polynomial from Kauffman bracket. In this section, we generally follow [BN02], certainly
with the same conventions. However, I may word things differently or rotate some pictures, for our future
benefit.

Definition 2.4.1 ([Kau87]). The Kauffman bracket ⟨·⟩ is defined by the recursion

• ⟨∅⟩ = 1
• ⟨#L⟩ = (q + q−1)⟨L⟩
• ⟨ ⟩ = ⟨ ⟩ − q⟨ ⟩

Note that these local pictures are unoriented, unlike those in the skein relation for the Jones polynomial.

Remark 2.4.2. Each crossing has two possible smoothings, which we will name the 0-resolution and the
1-resolution, as shown:

0←− 1−→ .

• The 0-resolution is the one that you would naturally draw if you started at an over-strand and drew
a smile. It gets no coefficient in the Kauffman bracket.

3I have not provided a precise definition here. This is a good time to Google the term yourself to see some examples of the

connected sum operation.
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• The 1-resolution is the one that you would draw if you started at the over-strand and drew a frown.
It gets a coefficient of −q in the Kauffman bracket.

Note that I draw my smileys like this: • •

The Kauffman bracket is not a link invariant. To see this, compare ⟨#⟩ and ⟨ ⟩. It is, however, a framed
invariant. May talk more about this later.

To fix this, we have to take into account the writhe of a diagram, which measures how ‘twisty’ the choice

of diagram is.

Definition 2.4.3. Let D be an oriented link diagram.

• Let n be the number of crossings in D.
• Let n+ be the number of positive crossings, and let n− be the number of negative crossings.

The writhe of D is wr(D) = n+ − n−.

Definition 2.4.4. The (unnormalized) Jones polynomial is defined by

Ĵ(L) = (−1)n−qn+−2n−⟨L⟩

Note that we are treating L as both the link diagram and the link it represents. Equivalently, Ĵ(L) =
(−q)−n− · qwr(L)⟨L⟩.

Remark 2.4.5. Alternatively, we can build the overall shifts into the bracket, using the following recursion:

• ⟨∅⟩o = 1
• ⟨#L⟩o = (q + q−1)⟨L⟩o Recall that the two orientations on the unknot are isotopic.

• (positive crossing) ⟨ ⟩o = q⟨ ⟩o − q2⟨ ⟩o
• (negative crossing) ⟨ ⟩o = q−2⟨ ⟩o − q−1⟨ ⟩o

The notation ‘⟨·⟩o’ is not standard, and is used here only to distinguish it from the bracket used in [BN02].

Exercise 2.4.6. (1) How does the writhe of a diagram change under the Reidemeister moves?
(2) How does the Kauffman bracket ⟨·⟩ of a diagram change under the Reidmeister moves?

(3) Verify that the bracket ⟨·⟩o in Remark 2.4.5 computes Ĵ , i.e. Ĵ(L) = ⟨L⟩o.

Example 2.4.7. Let H denote (oriented) Hopf link shown below, where n = 2, n+ = 2, and n− = 0.
First, we compute the Kauffman bracket of the shown diagram:

= (q + q−1)2 − 2q(q + q−1) + q2(q + q−1)2

= q4 + q2 + 1 + q−2.



8 MELISSA ZHANG

Therefore

Ĵ(H) = (−1)n−qn+−2n−⟨H⟩
= q2(q4 + q2 + 1 + q−2) = q6 + q4 + q2 + 1.

The normalized Jones polynomial, using these conventions, would be Ĵ(H)
q+q−1 = q5 + q.

2.5. Jones polynomial via the Khovanov bracket. Khovanov homology Kh(·) is a (Z ⊕ Z)-graded
(co)homology theory whose graded Euler characteristic recovers the Jones polynomial. The extra grading is
usually called the quantum grading or the internal grading.4

Definition 2.5.1. Let C = (
⊕

i,j∈Z C
i,j , d) be a bigraded chain complex of Z-modules where, for each j,⊕

i∈Z C
i,j is finite rank.

The graded Euler characteristic of C is

χq(C) =
∑
i,j∈Z

(−1)iqj rankHi,j(C).

Recall that the Euler characteristic of a CW complex can be computed using any CW decomposition; in
particular, you do not need to compute the differentials in the CW chain complex to determine the Euler
characteristic.

Similarly, we do not need to know the differential d to compute χq(C). So, for now, we will define
Bar-Natan’s Khovanov bracket, which lift the recursion in Definition 2.4.1 to the level of bigraded chain
complexes:

Definition 2.5.2. The Khovanov bracket is defined by the axioms

• J∅K = (0→ Z→ 0)
• J#LK = V ⊗ JLK where V = Zv+ ⊕ Zv− of graded dimension q + q−1. We will discuss the actual
definition later.

• J K = Tot
(
0→ J K d−→ J K{1} → 0

)
, where {1} means ‘q-grading shift of 1’ (see Notation 2.5.4).

The terms of each chain complex at homological grading 0 are underlined. The totalization functor flattens
a multi-dimensional complex into a one-dimensional chain complex. Since we are not considering the dif-
ferential right now, we will not carefully define this here. If the tensor product of chain complexes looks
unfamiliar to you, this is something you should look up.

Theorem 2.5.3 (Khovanov, as interpreted by Bar-Natan). Given a link diagram L with n± crossings of
sign ± respectively, the associated Khovanov chain complex is given by

CKh(L) = JLK[n−]{n+ − 2n−}.

The square brackets indicate a shift in the homological grading (see Notation 2.5.4). Then

Ĵ(L) = χq(CKh(L)) = χq(Kh(L)).

Notation 2.5.4. We set our conventions for the grading shift functors [n] and {m} to agree with those
appearing in [BN02]. Let A =

⊕
A•,• be a bigraded Z-module. Then A[n]{m} is the bigraded Z-module

where

(A[n]{m})i,j = Ai−n,j−m.

Visually, if A is plotted on the the Z⊕ Z bigrading lattice, A[n]{m} is obtained by grabbing A and moving
it by the vector ne1 +me2.

Example 2.5.5. We now reorganize the computation in Example 2.4.7, as a primer for our formal intro-
duction to Khovanov homology in the next section.

Let H denote both the following diagram as well as the underlying oriented Hopf link:

4Sometimes I may say ‘degree’ instead of grading. I will likely pontificate on the terms grading and degree later in the

course.
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To compute JHK, we draw the cube of complete resolutions:

We associate V ⊗c to each complete resolution containing c closed components. Each complete resolution
corresponds to a binary string u ∈ {0, 1}2, and we perform a quantum grading shift of |u| on associated
Z-module, where |u| is the number of 1’s appearing in the bitstring u.

This yields the Khovanov bracket

JHK = (V ⊗ V → V ⊕ V {1} → V ⊗ V {2}) .

(Recall that the underline indicates the chain group at homological grading 0.)
The Khovanov chain complex (without specifying differentials) is therefore

CKh(H) = (V ⊗ V → V ⊕ V {1} → V ⊗ V {2}) [n−]{n+ − 2n−}
= (V ⊗ V → V ⊕ V {1} → V ⊗ V {2}) [0]{2}
= (V ⊗ V {2} → V ⊕ V {3} → V ⊗ V {4}) .

Schematically, can visualize the bigraded chain groups as follows, where each • represents a copy of Z:
χ:

grq = 6 • 0− 0 + 1 = 1
grq = 4 • •• •• 1− 2 + 2 = 1
grq = 2 •• •• • 2− 2 + 1 = 1
grq = 0 • 1− 0 + 0 = 1

grh = 0 grh = 1 grh = 2

Here grh and grq denote the homological and quantum grading, respectively.

We conclude that, indeed, χq(CKh(H)) = q6 + q4 + q2 + 1 = Ĵ(H).

Example 2.5.6. For a very comprehensive computation of the Jones polynomial of the trefoil using the
Kauffman bracket, see Equation (1) of [BN02].

3. Khovanov homology

3.1. The Khovanov chain complex CKh(D). Given an oriented link diagram D representing a link L, the
Khovanov chain complex CKh(D) is a (Z⊕Z)-graded chain complex of abelian groups. We define this chain
complex throughout this section. Throughout, we will use the term bigraded in place of ‘(Z⊕ Z)-graded’.
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3.1.1. Cube of resolutions. The cube of resolutions will set up the topological story that the chain complex
tells. Afterwards, we will replace each part of the cube of resolution with algebraic objects, to fully define
the Khovanov chain complex.

Let n be the number of crossings in the diagram D, and pick an ordering for the crossings. Let ci denote
the ith crossing.

The n-dimensional binary cube {0, 1}n is the poset of binary strings (a.k.a. bitstrings) of length n, with
partial order given by 0 ≺ 1 and lexicographic order.

Notation 3.1.1. Recall some terms and notations used when discussing partially ordered sets:

• If u ≺ v, then we say u precedes v (and v succeeds u).
• If u ≺ v and they differ at exactly one bit, then we say u is an immediate predecessor of v (and v is
an immediate successor of u). In this case, we write u ≺1 v.

We may think of a poset as a directed graph, with and edge u→ v if u ≺1 v.

Notation 3.1.2. For convenience, if u ≺1 v and they differ at the ith bit, then we use the following length-n
string in {0, 1, ∗}n to denote the edge u→ v:

u1u2 · · ·ui−1 ∗ ui+1 · · ·un = v1v2 · · · vi−1 ∗ vi+1 · · · vn
For u ∈ {0, 1}n, let Du denote the complete resolution of the diagram D where crossing ci is smoothed

according to the bit ui:
0←− 1−→

If u ≺1 v, then Du and Dv differ only in the neighborhood of one crossing, called the active crossing of
the edge u ≺1 v. All other crossings are passive.

Also, u ≺1 v represents either

• a merge of two circles (i.e. closed components) of Du into one circle in Dv or
• a split of one circle of Du into two in Dv.

Any of these circles are called active circles of the edge u ≺1 v. All other circles are passive; they look the
same in both Du and Dv.

Finally, when assigning gradings, we will need the Hamming weight of bitstrings:

|u| =
∑
i

ui.

3.1.2. Chain groups, distinguished generators, gradings. We now describe the distinguished generators of the
Khovanov chain complex.

Our chain groups will be bigraded by gr = (grh, grq):

• The first grading is called the homological grading, denoted by grh. Its shift functor is denoted by
[·].

• The second grading is called the quantum (or internal) grading, denoted by grq. Its shift functor is
denoted by {·}.

Let V denote the bigraded Z-module Zv+ ⊕ Zv− with generators v± in bigradings (0,±1).
Let |Du| denote the number of circles in the resolution Du. The chain group lying above vertex u of the

cube is V ⊗|Du|[|u|]{|u|} generated by the 2n length-n pure tensors

{v± ⊗ · · · ⊗ v±}.
These are called the distinguished (i.e. chosen) generators of the chain group at this vertex.

Remark 3.1.3. The bigrading gr for a distinguished generator in V ⊗k is determined by the bigrading on
V :

gr(a⊗ v±) = gr(a) + gr(v±).

For example, gr(v+ ⊗ v− ⊗ v−) = (0,−1).
Remark 3.1.4. Note that when we actually write down a chain complex, we implicitly homologically shift
the chain groups. For example, the following chain complex is acyclic5:

V
1−→ V.

5i.e. homology vanishes
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If we view the chain complex as a graded module C, and the differential as an endomorphism d, then

• C = V ⊕ V [1] and

• d =

[
0 0
1 0

]
This mapping cone point of view will become useful later in the course. Now is a good time to review/read
about mapping cones in homological algebra. See §3.2 for a review, and also some comments about the
conventions we are using.

3.1.3. Differentials. To each edge of the cube u → v, we assign a map according to whether the edge
represents a merging of two circles or the splitting of one circle. We casually call these the ‘edge maps’.

• If u→ v represents a merge, the map on tensor components corresponding to active circles is given
by:

m : V ⊗ V → V

v+ ⊗ v+ 7→ v+

v+ ⊗ v−, v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0

• If u→ v represents a split, the map on active components is given by:

∆ : V → V ⊗ V
v+ 7→ v+ ⊗ v− + v− ⊗ v+
v− 7→ v− ⊗ v−

The map is identity on the passive components of the tensor product.

Example 3.1.5. Here is a diagram for the right-handed trefoil, with a choice of ordering on the three
crossings (in blue):

In the cube of resolutions, the edge corresponding to 101 → 111 is a merging of two circles into one, with
the active crossing circled in dotted cyan:

We have chosen an ordering on the set of circles (in red) at each resolution so that we can identify the copies
of V in the tensor product at each vertex. For example, the distinguished generator v− ⊗ v+ at resolution
Du labels the smaller circle v− and the larger v+.

The linear map duv is given by the bundle of arrows shown below, where we use shorthand notation for
compactness (e.g. v+++ := v+ ⊗ v+ ⊗ v+):
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v++

v+− v−+

v−−

v+++

v++− v+−+ v−++

v+−− v−+− v−−+

v−−−

Observe that duv is identity on the passive circle labeled ‘1’ in both Du and Dv.

Exercise 3.1.6. (Important)

(a) Verify that the merge and split maps, as written, decrease the quantum grading by 1.
So, as part of the differential, we modify the merge and split maps to be grq-preserving maps

duv : V ⊗ V → V {1} or duv : V → V ⊗ V {1},

depending on whether the edge u→ v corresponds to a merge or a split, respectively.
(b) Verify that along each 2D face of the binary cube, the edge maps commute.

Therefore, in order to get a chain complex (where d2 = 0), we will need to add some signs so that
the faces instead anticommute.

(c) For an edge u→ v in the cube with active crossing ci, associate the following sign:

suv = (−1)
∑i−1

j=1 ui .

In other words, suv measures the parity of the number of 1’s appearing before the ∗ in the label
given to the edge in the binary cube (see Notation 3.1.2).

Verify that, for any face of the binary cube, and odd number of the four edges bounding that face
will have sign assignment −1.

This is not the only possible sign assignment.

3.1.4. Global grading shifts and homology. To compute Khovanov homology of an oriented link L using
diagram D:

(1) Draw the cube of resolutions.
(2) Associate modules V ⊗|Du| to each vertex u of the cube.
(3) Associate linear maps suvduv to each edge u→ v.
(4) Flatten the complex, by taking direct sums along Hamming weights; the resulting complex is the

Khovanov bracket, JDK.
(5) Add in the global bigrading shift [−n−]{n+ − 2n−} to get the Khovanov chain complex :

CKh(D) = JDK[−n−]{n+ − 2n−}.

There was a typo here before; the square and squiggly brackets were switched!
(6) Take homology to get Khovanov homology :

Kh(L) = H∗(CKh(D)).

The Khovanov chain complex CKh(D) is bigraded, and its differential dKh is a bidegree (1, 0) endo-
morphism. Therefore CKh(D) is really the direct sum of many chain complexes, one for each quantum
grading:

CKh(D) =
⊕
j∈Z

CKh•,j(D).

The homology is bigraded by the homological and quantum gradings (indexed below by i and j, respectively):

Kh(L) =
⊕
i,j∈Z

Khi,j(L).
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Example 3.1.7. We now finally compute the Khovanov homology of the Hopf link H from Examples 2.4.7
and 2.5.5.

In order to uniquely identify the generators at the different resolutions in the cube, we label the resolutions
u, v, w, x and use these letters to denote the distinguished generators at each resolution:

• The vertices of the binary cube are labeled in purple.
• The ordering of the tensor factors (i.e. circles) at each resolution is shown in pink. Below each arrow,
the pink text indicates the active circles in the source and target of that edge.

• The only edge with sign assignment −1 is the split map shown in bold red.

In shorthand, the Khovanov chain complex CKh(H) (i.e. with global shifts incorporated) is the following
chain complex (direct sums are taken vertically):
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The bigradings of the distinguished generators of CKh(H) are shown in pink.
The reader may now verify that the Khovanov homology of the positively-linked Hopf link H is the

bigraded Z-module

grq = 6 Z

grq = 4 Z

grq = 2 Z

grq = 0 Z

grh = 0 grh = 1 grh = 2

generated by the homology classes

grq = 6 [x++]

grq = 4 [x+−] = [x−+]

grq = 2 [u+− − u−+]

grq = 0 [u−−]

grh = 0 grh = 1 grh = 2

Exercise 3.1.8. The diagrams D and D′ below both represent the unknot, U .

(a) Compute the Khovanov chain complex CKh for both, and then compute homology to verify that
they indeed agree.

(b) Can you prove that Khovanov homology is invariant under the following Reidemeister 1 move?
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Bar-Natan’s introductory paper does cover this, but try first to use intuition from your solution to
part (a) to find the appropriate chain homotopy equivalence.

3.2. Algebraic aside: Mapping cones. In a category of chain complexes graded cohomologically, let
f : A→ B be a chain map between complexes A = (

⊕
iA

i, diA) and B = (
⊕

iB
i, diB):

The mapping cone of f , denoted by C(f) or Cone(f), is defined as

C(f) :=

(⊕
i

(Ai+1 ⊕Bi),
⊕
i

(
−di+1

A 0
f i+1 diB

))
and can be visualized as a collapse of previous diagram:

In the previous diagram, the squares commuted (because f is a chain map). In order to get d2C(f) = 0, we

instead need the squares to anticommute, and so we made the choice to negate all the instances of the diA
differentials.

Warning 3.2.1. Recall that the shift functor [n] in Bar-Natan’s conventions [BN02] is defined by

(A[n])i = Ai−n

so that the quantum dimension of (A[n]i) is qn times the quantum dimension of Ai. In these conventions,
we may write

C(f) =

(
A[−1]⊕B,

(
dA[−1] 0
f [−1] dB

))
where we use the convention that dA[−1] = −dA.

This is not how you’d usually see the definition of a cone in a cochain complex category, so I encourage you
to instead carefully understand the cone construction without memorizing the notation. We will, however,
continue using these conventions for the sake of having useful notation.

In practice, we usually just write the cone as

C(f) =
(
A

f−→ B
)
,
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with the parentheses indicating that we are thinking of a single complex, i.e. the whole cone, rather than a
map between complexes. We can think of B as ‘shifted by 0 homologically’, and instead write

C(f) =
(
A

f−→ B
)

to be more clear that A is the one being shifted left.
Notice that B ↪→ C(f) as a subcomplex, and A[−1] ∼= C(f)/B is the quotient. Thus there is a short

exact sequence

0→ B
i−→ C(f)

p−→ A[−1]→ 0

where i is inclusion and p is the quotient map. This gives rise to a long exact sequence on homology

· · · → Hj(B)
i∗−→ Hj(C(f))

p∗

−→ Hj+1(A)
f∗

−→ Hj+1(B)
i∗−→ Hj+1(C(f))→ · · ·

where the connecting map f∗ is induced by f .

Remark 3.2.2. Once again, because of our conventions, we have a somewhat nonstandard-looking exact
triangle:

A→ B → C(f)→ A[−1].
But all is well; this is just a notational difference from what you might be used to.

3.3. An underlying TQFT. The algorithm/definition in the previous section is concrete, but you might
be wondering where these m and ∆ maps come from. The answer lies in the fact that morphisms in the
category of bigraded Z-modules are images of cobordisms under a functor from a more topologically defined
category. In this section, we describe an6 underlying TQFT that determines the maps m and ∆ from the
previous section.

3.3.1. TQFTs. QFTs (quantum field theories) and TQFTs (topological quantum field theories), have a rich
history in mathematical physics. The purposes of this course, we will use the following simplified (i.e. vague)
definition, adapted from [Ati88]:

Definition 3.3.1. (Vague7) Let R be a commutative ground ring. An (n + 1)-dimensional TQFT is a
functor Z from a category of closed n-dimensional manifolds and (n+ 1)-dimensional cobordisms8 between
them to a category of finitely generated (see Remark 3.3.3) R-modules, such that

• Z is multiplicative: Z(Y ⊔ Y ′) = Z(Y )⊗ Z(Y ′).
• Z is involutory : If Ȳ is Y with the opposite orientation, then Z(Ȳ ) = Z(Y )∗ (the dual module).

We also naturally would like Z to send the identity cobordism Y × I : Y → Y to the identity map.

Functoriality implies that if C01 : Y0 → Y1 and C12 : Y1 → Y2 are cobordisms, then

Z(C12 ◦ C01) = Z(C12) ◦ Z(C01) : Z(Y0)→ Z(Y2).

Make sure you know what category and functor mean. Things will get confusing from here on out if these
terms aren’t clear.

Remark 3.3.2. To learn more about physical origins of the term topological quantum field theory, take a
look at the ncatlab page.

Atiyah’s Topology quantum field theories [Ati88] provides a set of precise axioms for (n+ 1)-TQFTs and
surveys some prominent examples.

Remark 3.3.3. Since any (orientable) manifold only has two orientations, the category of cobordisms is
pivotal, i.e. A ∼= (A∗)∗ for any object A.

(1) Thus the target category of the functor needs to be pivotal as well; this is why we require finitely
generated R-modules.

(2) Since our categories are pivotal we can identify any cobordism C : K → L with various ‘bent’
versions of C, shown in the schematics below:

6We will see variations later, but focus first on the one that’s easiest to work with.
7We are more interested in specific TQFTs, so will not emphasize the details here.
8up to some equivalence relation

https://ncatlab.org/nlab/show/topological+quantum+field+theory
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We thus get equivalences

Hom(K,L) ∼= Hom(K ⊗ L̄,∅) ∼= Hom(∅, K̄ ⊗ L).

(3) We can view the equivalence

Hom(Z(K)⊗ Z(L̄), Z(∅)) ∼= Hom(Z(K), Z(L))

as an instance of the Tensor-Hom Adjunction:

Hom(M ⊗N,P ) ∼= Hom(M,Hom(N,P ))

by setting M = Z(K), N = Z(L̄) = Z(L)∗, and P = Z(∅) = R. (Note that Hom(N,P ) =
Hom(Z(L)∗, R) = (Z(L)∗)∗ ∼= Z(L).)

3.3.2. Bar-Natan’s dotted cobordism category and TQFT. In this section, we will focus on one particular
TQFT, which we will denote FBN. This material is adapted from [BN05].

First, we need to understand the source category.

Definition 3.3.4. A small category C is preadditive (a.k.a. ModZ-enriched)if for X,Y ∈ Ob(C), HomC(X,Y )
is an abelian group (i.e. a Z-module) under composition, and this composition is bilinear (under the action
of Z).

Remark 3.3.5. A category is additive if additionally, we have finite coproducts. We will boost up to
additive categories later in §3.5.

Definition 3.3.6. The preadditive category T L0 is defined as follows:

• Objects are closed 1-manifolds with finitely many components embedded smoothly in the plane R2;
we call these planar circles. Notice that we are not identifying isotopic embeddings, but we do ignore
parametrization.

• Morphisms are finite sums of dotted cobordisms, or smooth surfaces embedded in R2 × I,
– with boundary only in R2 × ∂I,
– possibly decorated with a finite number of dots,
– up to boundary-preserving isotopy, and
– subject to the following relations:
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(1) ‘

The last relation is often referred to (gruesomely) as the neck-cutting relation.

The target category will be bigraded Z-modules, which we will denote as ggModZ when we want to
emphasize the bigrading, or just ModZ for short. The most important module for us will be the one
associated to a single circle in the plane, which we previously called V . We will now rename this module
and view it as V ∼= A{1}, where

A = Z[X]/(X2)

with degq(X) = −2.

Definition 3.3.7. The functor FBN : T L0 → ggModZ assigns

• to each collection of k planar circles the module (A{1})⊗k (with ∅ ; Z)
• to each dotted cobordism a linear map determined by the following assignments:

Remark 3.3.8. Notice that Definition 3.3.7 is really a Definition-Theorem, since one needs to check that it
really is a functor. What does one need to check to make sure that FBN really is a functor?

Let C1 and C2 be cobordisms ∅→ P , where P is a collection of planar circles. Then there is a Z-valued
pairing

⟨C1, C2⟩ = FBN(C1 ∪∂ C̄2) (= FBN(C̄1 ∪∂ C2))

because C1 ∪∂ C̄2 is a closed 2-manifold, and the relations in T L0 allow us to evaluate closed surfaces.
In the following exercise, we will use this pairing to recover the linear maps m and ∆ from the previous

section.

Exercise 3.3.9. (Not eligible for HW submission; we will complete these in lecture.)

(a) In Definition 3.3.7, why did we not need to specify how FBN assigns higher-genus cobordisms?
(b) We can identify the distinguished Z-module generators 1 and X in A{1} with a cup and a dotted

cup, respectively. Why does this make sense?
(c) What is the dual cobordism to the cup? ...the dotted cup?
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(d) Using this basis for A{1} and the pure tensor basis for A{1}⊗2, determine the matrix (i.e. chart)
associated to the merge and split cobordisms by using the pairing.

Aside 3.3.10. (Computing linear maps using pairings)
Here is the linear algebra analogue to the method we are using above to compute the maps m and ∆.
Let M : Rn → Rn be a matrix with respect to the standard basis vectors {ei}. We can view M as a

pairing, by setting
⟨v, w⟩M = w⊤Mv ∈ R.

The entries of the matrix are determined by the pairing on basis vectors:

Mij = e⊤i Mej

(Recall i is the row and j is the column.) This is because Mij is the coefficient of ei in the image vector
Mej .

In our setting, we are actually taking one additional step, which is to identify the column vectors v and w
with the linear maps R→ Rn that they represent, as n× 1 matrices. (The ‘dual’ vector w⊤ is a row vector
that represents a linear map Rn → R.)

So a ‘closed surface’ in our setting corresponds to the composition of maps

R v−→ Rn M−→ Rn w⊤

−−→ R,
and setting v and w to be basis vectors allows us to compute the entries of M .

(Note that any linear map R → R is necessarily of the form ·r for some r ∈ R. We are implicitly using
HomR(R,R) ∼= R.)

Observe that even though we defined the target of FBN to be ggModZ, everything is happening at
homological grading 0 at the moment; we don’t yet have chain complexes! However, the quantum degree of
morphisms can be determined in the source category T L0, as you’ll discover in the next exercise.

Using Morse theory, we can show that every cobordism C between finite collections of planar circles
P → P ′ can be isotoped so that the critical points occur at distinct times t ∈ I. We can slice up the
cobordism into pieces

C = Cm ◦ Cm−1 ◦ · · · ◦ C2 ◦ C1

where each Ci is a disjoint union of some identity cylinders and one of the following four elementary cobor-
disms:

• cup (ι)
• cap (ε)
• merge (m)
• split (∆)

Exercise 3.3.11. (Important) Prove that for any cobordism C : P → P ′, the bidegree of the associated
linear map is

gr(FBN(C)) = (0, χ(C)),

where χ(C) is the Euler characteristic of the surface C.

Remark 3.3.12. Bar-Natan’s more general cobordism category does not include dots as decorations. The
objects are the same as in T L0, but morphisms are subject to different relations:

These relations are called the S (sphere), T (torus), and 4Tu (four tubes) relations.
We will sometimes work with this category, but for now have chosen to start with the dotted category

because elementary calculations are easier there.
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Exercise 3.3.13. (a) Use the T and 4Tu relations to show that the genus-2 orientable surface evaluates
to 0:

(b) Use 4Tu to show the relation below:

Use this to explain why, morally speaking, ‘dot’ = ‘half of a handle’.

3.3.3. (Aside) Frobenius algebras and (1+1)-TQFTs. We now discuss why we switched from using the Z-
module

V = Zv+ ⊕ Zv−
to the underlying Z-module of the Z-algebra

A = Z[X]/(X2).

See [Kho06a] for a reference.

Definition 3.3.14. A Frobenius system is the data (R,A, ε,∆) consisting of

• a commutative ground ring R;
• an R-algebra A; in particular:

– There is a unit or inclusion map ι : R→ A that sends 1 7→ 1.
– A has a multiplication map m : A⊗R A→ A.

• a comultiplication map ∆ : A→ A⊗R A that is both coassociative and cocommutative; and
• an R-module counit map ε : A→ R such that

(ε⊗ id) ◦∆ = id.

The algebra A is a Frobenius algebra; it is simultaneously both an algebra and a coalgebra, and the
following relation holds:

(idA ⊗m) ◦ (∆⊗ idA) = ∆ ◦m = (m⊗ idA) ◦ (idA ⊗∆).

Remark 3.3.15. There are many equivalent definitions for the term ‘Frobenius algebra’. The definition we
used above is the most topological:

As you might have guessed, there is a strong relationship between Frobenius algebras and TQFTs.
In our case, A = Z[X]/(X2) is a rank 2 Frobenius extension of the ground ring Z. Rank 2 Frobenius

systems yield (1 + 1)-dimensional TQFTs, via the identifications below:
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the (1 + 1)-TQFT sends this... ... to this in the Frobenius system

∅ R

S1 A

cup ι

merge m

split ∆

cap ε

By modifying the Frobenius algebra, we can get many more flavors of Khovanov homology. For example,
if we instead use R = Z, A = Z[X]/(X2 − 1), we would build a version of Khovanov homology that is
not quantum-graded (because X2 = 1 is not a graded equation). This version of Khovanov homology is
called Lee homology, and will be discussed later in this course when we talk about topological applications
of Khovanov homology.

Warning 3.3.16. Do not use the category T L0 from Definition 3.3.6 as the source of the TQFT functor
for Lee homology! The category T L0 was specifically tailored to the version of Khovanov homology over
A = Z[X]/(X2), where ‘two dots = 0’.

3.4. Bar-Natan’s tangle categories. We now return back to dotted cobordisms, but develop the theory
for not just planar circles, but also planar tangles.

Just as a link is an embedding of a finite number of circles in R3, a tangle is a proper embedding of a
finite number of circles and arcs in a 3-ball B3. A planar tangle is a tangle embedded in a 2-disk D2.

Since we will be building complicated categories out of tangles, we want to be very concrete with our
definition of tangle categories, and will instead use the following definition.

Definition 3.4.1. An (n, n)-tangle is a 1-manifold with 2n boundary components (a.k.a. endpoints), prop-
erly embedded in the thickened square [0, 1]× [0, 1]× (− 1

2 ,
1
2 ), with 2n endpoints located at

(2)

{(
i

n+ 1
, 0, 0

)}n

i=1

∪
{(

i

n+ 1
, 1, 0

)}n

i=1

.

An (n, n)-tangle diagram is a projection of an (n, n)-tangle to the unit square [0, 1] × [0, 1] where all
singular points are transverse intersections (just as in link diagrams).

A planar (n, n)-tangle is an (n, n)-tangle embedded in the square [0, 1] × [0, 1] × {0}. In other words, a
planar tangle is a crossingless projection of a (quite untangled) tangle.

Remark 3.4.2. A planar (n, n)-tangle with no closed components is a crossingless matching. These are the
Catalan(n) many generators of the Temperley-Lieb algebra TLn(δ) over a field k, whose composition ⊗ is
given by stacking squares vertically:
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Closed components evaluate to a nonzero element δ ∈ k:

We are not thinking about the monoidal structure of these diagrams just yet. But perhaps you can see
the analogue between this (0+1)-dimensional cobordism category and the (1+1)-dimensional cobordism
categories we’re working with.

Definition 3.4.3 (cf. Definition 3.3.6). The preadditive category T Ln is defined as follows:

• Objects are planar (n, n)-tangles with finitely many components, embedded smoothly in the square
I2 with endpoints at the 2n points specified in (2), denoted by p.

• Morphisms are finite sums of dotted cobordisms properly embedded in I2 × [0, 1],
– with vertical boundary (i.e. on ∂I2× [0, 1]) consisting only of 2n vertical line segments p× [0, 1];
– possibly decorated with a finite number of dots;
– up to boundary-preserving isotopy;
– subject to the same local relations (1) as in Definition 3.3.6.

So far, we’ve only defined a TQFT that can ‘evaluate’ closed components to a Z-module. Since tangles in
T Ln will inevitably have non-closed components, i.e. arcs, we will not be specifying a functor to ModZ just
yet. Instead, we will bring our algebraic tools to the topological categories T Ln and do as much homological
algebra as we can before passing through any TQFT. Later on in the course, however, we may discuss
how to define a 2-functor from the 2-category of (n points, (n, n)-tangles, (n, n)-tangle cobordisms) to an
appropriately rich algebraic 2-category.

In particular, we can still treat T Ln as a (bi)graded category, where the quantum degree of a dotted
cobordism C is defined as

degq(C) := χ(C)− n = χ(C)− 1

2
(# vertical boundary components)

(and the homological degree is degh(C) = 0).

3.5. Adding crossings : Boosting to chain complexes. The Kauffman bracket showed us how to take
a tangle with crossings and express it in terms of planar tangles; the Khovanov bracket tells us that a tangle
with crossings is really just a chain complex of planar tangles. In this section, we will boost our categories
T Ln to categories of chain complexes, so that we can capture tangles in general, not just planar tangles.

Throughout this section, we will be working in the more general setting of tangles; recall that T L0 is just
a special case of the categories T Ln. Also recall that these are all preadditive categories, by construction.

Definition 3.5.1 ([BN05], Definition 3.2). Let C be a preadditive category. The additive closure of C,
denoted by Mat(C), is the additive category defined as follows:

• Objects are (formal) direct sums of objects of C. We can represent these as column vectors whose
entries are objects of C.
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• Morphisms are matrices of morphisms in C, which are added, multiplied, and applied to the objects
just as matrices are added, multiplied, and applied to vectors.

An additive category is preadditive, by definition (Remark 3.3.5). We can build a category of chain
complexes over any preadditive category:

Definition 3.5.2 ([BN05], Definition 3.3). Let C be a preadditive category. The ⋆ category of chain com-
plexes over C for ⋆ ∈ {b,−,+}, denoted by Kom⋆(C), is defined as follows:

• Objects are { finite length, bounded above, bounded below }9 chain complexes of objects and mor-
phisms in C.

• Morphisms are chain maps between complexes.

Remark 3.5.3. For an example of a category of chain complexes over a preadditive but not additive category,
take a look at Kom(MZ[G]) in [ILM21, Remark 2.11].

Exercise 3.5.4. compute this composition of morphisms in Mat

We are now ready to define the Bar-Natan categories, which are the categories we land in just before
applying a TQFT to an algebraic category like chain complex over Z-modules.

Definition 3.5.5. The Bar-Natan category BN ⋆
n is Kom⋆(Mat(T Ln)), for ⋆ ∈ {b,−,+}. In practice, I

will mostly drop the ⋆ from the notation. The bounded category is a full subcategory of both the − and
+ categories. We will only be working with bounded complexes at the beginning of the course, so the
distinction won’t matter.

These categories are rich enough to capture the entirety of the information in Khovanov homology, without
ever passing to rings and modules. For example, we can think of Khovanov homology as a functor from
links and cobordisms to the Bar-Natan category BN 0. We may then choose a TQFT (or, equivalently, a
Frobenius system) to apply to the resulting invariant, to obtain many different flavors of Khovanov homology.
Moreover, we now have a “Khovanov homology for tangles.”

Remark 3.5.6. Since A = Mat(T Ln) is an abelian category, the homotopy category K⋆(A ) of chain
complexes over A (for ⋆ ∈ {b,−,+}) is a triangulated category. Khovanov homology can be thought of a
functor to a triangulated category Kb(Mat(T L0)), in which case the quasi-isomorphism class of Kh(L) is
the link invariant. The Kauffman bracket skein relation gives exact triangles in this category. For exercises
involving long exact sequences in Khovanov homology, see [Tur16].

To demonstrate the use of these Bar-Natan categories, we will use these categories to prove the invariance
of Khovanov homology under some Reidemeister moves. You may find the proofs using the undotted (S, T ,
4Tu) theory in [BN05]. We will instead use the dotted theory as part of our demonstration. But first, we need
to introduce two important lemmas that are immensely helpful with both by-hand and computer-assisted
computations.

3.6. Computational tools. Bar-Natan’s categories are also incredibly useful in computing Khovanov ho-
mology (by computer), because they allow for a ‘divide-and-conquer’ approach using tangles. Implemented
algorithms typically scan a link diagram, simplifying the homological data at each step of the filtration of
the diagram. The main tools used for simplification are delooping and abstract Gaussian elimination, which
we discuss below. This section follows [BN07].

Remark 3.6.1. These algorithms have been immensely important to solving problems in low-dimensional
topology. For example, Lisa Piccirillo’s proof that the Conway knot is not slice [Pic20] involves computing
the s invariant (see §4.3) from the Khovanov homology of a knot with a lot (like around 40; I haven’t counted
carefully) of crossings, which is effectively impossible by naive computation.

Let us first write down a concrete formula for the degree of a morphism in T Ln.

Warmup 3.6.2. As a sanity check, let’s answer some warmup questions. See Notation 2.5.4 for our con-
ventions on shift functors.

9If the notation feels counterintuitive, just remember that ‘bounded above’ complexes are ‘supported mostly in negative

degrees’.
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(a) Let A be a graded R-module, with shift functor [·]. The set of degree-preserving maps A[i] → A[j]

correspond to elements of Homk(A,A) for some k ∈ Z. What is k? Answer: k = i− j
(b) Suppose φ ∈ Hom0(A,A). What is the degree of the map induced by φ from A[i]→ A[j]? Answer:

j − i
(c) Now suppose ψ ∈ Homℓ(A,A). What is the degree of the map induced by ψ from A[i] → A[j]?

Answer: j − i+ deg(ψ)

Lemma 3.6.3. Let F be a (possibly dotted) cobordism between planar tangles T, T ′ ∈ T Ln. The degree
of the morphism

F : T{i} → T ′{j}
is

(3) degq(F ) = j − i+ χ(F )− n

(where n is 1
2 the number of tangle endpoints, or vertical boundary components).

Verify that this makes sense to you!
From now on, we will treat diagrams and cobordism drawings as the same things as the objects and

morphisms they represent in BN .

Lemma 3.6.4 ([BN07], Lemma 4.1). (Delooping) # is chain homotopy equivalent to ∅{1}⊕∅{−1} via the
chain homotopy equivalences

Proof. We leave it to the reader to check that F and G are indeed degree-preserving (use Lemma 3.6.3). It
suffices to check that G ◦ F ≃ id# and F ◦G ≃ id∅{1}⊕∅{−1}. Indeed,

by the sphere, dotted sphere, and two dots relations, and

by the neck-cutting relation. (No nontrivial homotopies were needed; these compositions are identity “on
the nose”.) □

Delooping essentially allows us to replace any flat tangle containing a closed component with two (quantum-
shifted) copies of that flat tangle with that circle removed.

Our next tool is an abstract version of Gaussian elimination. You can ponder for yourself why this ‘is’
Gaussian elimination. Just remember that, in Q, any nonzero number is a unit. Row operations are just
changes of basis on the target of the linear map. Similarly, column operations are just changes of the basis
on the source of the linear map.
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Lemma 3.6.5 ([BN07], Lemma 4.2). (Gaussian elimination) Let C be a pre-additive category. Suppose in
Kom(Mat(C)) there is a chain complex segment

· · ·

α
β


−−−−→

A
B


e g

f h


−−−−−−→

C
D


(
γ δ

)
−−−−−−→ · · ·

where e is an isomorphism. Then the chain complex is homotopy equivalent to

· · ·

(
β
)

−−−→
[
B
] (

h− fe−1g
)

−−−−−−−−−−→
[
D
] (

δ
)

−−−→ · · ·

Note that

• A, B, C, D are objects in Mat(C)
• e, f, g, h, α, β, γ, δ are morphisms in Mat(C), i.e. these are matrices.

The main idea is that, by row and column operations, we are able to choose a basis so that the first chain
complex is the direct sum of the second chain complex and an acyclic complex

0→ A
e−→ C → 0.

See Bar-Natan’s proof for full details.

Corollary 3.6.6. (Cancellation lemma)10 Suppose (C, d) is a chain complex freely generated by a distin-
guished set of generators G, and we draw it using dots and arrows. For x, y ∈ G, let d(x, y) denote the
coefficient of y in d(x).

Suppose there is an isomorphism arrow a
e−→ c between distinguished basis elements a, c ∈ G, i.e. the

coefficient of the arrow is a unit in the ground ring R. Then (C, d) is chain homotopy equivalent to a
‘smaller’ chain complex (C ′, d′) where C ′ is generated by G − {a, c}, and for any b ∈ G,

d′(b) = d(b)− d(b, c)d(a).

The new arrows (fe−1g in the figure above) are called zigzags for obvious reasons.

Remark 3.6.7. Cancellation provides an especially fast way to compute Khovanov homology over F2. Here
is what my calculation for the Khovanov homology of the Hopf link looks like:

10See [BP10, Lemma 4.1], which directs you to [Ras03, Lemma 5.1], which directs you to [Flo89].
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3.7. Reidemeister invariance of Khovanov homology. Bar-Natan’s Reidemeister invariance proofs use
the more general S, T, 4Tu categories, and gives explicit homotopies where needed.

Here, we will stay with the T Ln categories that we defined and prove invariance under some (easy)
Reidemeister moves, and make use of some facts from homological algebra.

Definition 3.7.1. Let C, C′ be chain complexes. Let Cn denote the n-th chain group of C, and let C ′
n be

defined analogously.

• C′ is a subcomplex of C (written C′ ⊆ C) if each C ′
n is a submodule of Cn and the differential on C′

is the restriction of the differential on C.
• If C′ ⊆ C, then the quotient complex C/C′ has chain groups Cn/C

′
n, and the differential is induced

by the differential on C.

Lemma 3.7.2. Let

0→ C′ → C → C′′ → 0

be an exact sequence of chain complexes, i.e. C′′ ∼= C/C′.
(1) If C′ ≃ 0, then C ≃ C′′.
(2) If C′′ ≃ 0, then C ≃ C′.

We now show R1 invariance of any flavor of Khovanov homology that factors through the dotted cobordism
categories we defined.
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Example 3.7.3. Consider the Reidemeister move involving a twist with a negative crossing:

There is only one strand in this local picture, so this crossing will be negative regardless of how you orient
the strand.

Using the Khovanov bracket, we resolve the crossing to obtain a two-term chain complex in Kom(Mat(T L1))
representing the twist, and deloop the resolution on the right:

After delooping, our homotopic (actually isomorphic) complex is:

Notice that the downward arrow is an isomorphism in Mat(T L1). The quotient of the highlighted subcomplex
is therefore nullhomotopic.

Using Lemma 3.7.2, we conclude that the complex representing the negative R1 twist is chain homotopy
equivalent to the highlighted complex.

Remark 3.7.4. If you close up the (1, 1)-tangle in the example above, then we can see exactly why the
downward arrow is an isomorphism (red below), and the upward arrow (green below) is not:

Notation 3.7.5. We have been using shorthand for merges and splits by drawing the descending manifold
of the index-1 critical point in the saddle, on a diagram of the domain diagram:

It is sometimes also useful to have shorthand for other types of elementary morphisms:



28 MELISSA ZHANG

Example 3.7.6. Here is a proof of invariance under the ‘braidlike’ R2 move, corresponding to the diagram

Below is the complex representing the (2, 2)-tangle above, with delooping maps draw in orange. The purple
maps are compositions of green and orange maps.

After delooping, our complex looks like this:

Notice that the red arrows are isomorphisms. After performing Gaussian elimination on these red arrows,
we obtain the homotopy equivalent complex highlighted in yellow.

R3 is always a more complicated move to deal with, because

• there are 3 crossings, so one needs to compare two cubes with eight vertices each, and
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• there are three strands, and therefore many possible orientations

Nevertheless, Bar-Natan’s proof fits beautifully on just one page; see [BN05, Figure 9] to learn what a
‘monkey saddle’ is.

Exercise 3.7.7. (1) Prove invariance under the other R1 move, where the twist has a positive crossing.
(2) Prove invariance under the other R2 move, where the strands are antiparallel.

3.8. (Projective) Functoriality. We are now equipped to fully define a functor that allows us to study
links and cobordisms by replacing them with chain complexes and chain maps.

Once again, we begin by carefully defining our domain categories.

Definition 3.8.1. The category Link is defined as follows:

• Objects are smooth links in R311

• Morphisms are cobordisms between links, modulo isotopy rel boundary.

At first glance, Link would be the category we would want to define our functor out of. However, recall
that we don’t actually compute Khovanov homology directly from links; we actually use link diagrams. So,
we need to define an intermediate diagrammatic category that is equivalent to Link.

Definition 3.8.2. The category LinkDiag is defined as follows:

• Objects are smooth link diagrams drawn in R2 again, NOT up to isotopy!
• Morphisms are movies between link diagrams, modulo movie moves.

Movies and movie moves need to be discussed carefully, analogously to how we defined link diagrams and
Reidemeister moves.

Definition 3.8.3. A movie is a finite composition of the following ‘movie clips’:

• planar isotopy
• Reidemeister moves
• Morse moves: birth of a circle, death of a circle, merging of two circles, splitting of one circle into
two

If F ⊂ R3 × I is a cobordism from L0 ⊂ R3 × {0} to L1 ⊂ R3 × {1}, then an associated movie M can
be thought of as a collection of movie ‘frames’ {Mt | t ∈ [0, 1]} where Mt is a diagrammatic projection of
the ‘slice’ of the cobordism at time t, F ∩ (R3 × {t}). Indeed, the four Morse moves correspond to cup, cap,
merge, and split cobordisms, respectively.

Just as we required link diagrams to only have transverse intersections, and for crossings to not be on
top of each other, our definition for ‘movie’ ensures that our critical frames (i.e. frames where the projection
R3×{t} → R2 is not a link diagram) are isolated. Reidemeister moves and Morse moves are basically ‘before
and after’ pictures of the process of passing through a critical frame.

In the category Link, morphisms are considered up to isotopy rel boundary. Just as Reidemeister proved
that any diagram isotopy can be described as a finite composition of 3 local Reidemeister moves (and planar
isotopy), Carter and Saito showed that any isotopy rel boundary of a cobordism can be captured as a finite
composition of 15 local movie moves (and time-preserving isotopy), which are now known as the Carter-Saito
movie moves [CS93].

Here is a figure ripped from [Gra18]:

11or S3, if preferred, but see Remark 3.8.7
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Similar definitions can also be made for tangles:

Definition 3.8.4. The category Tangn is defined as follows:

• Objects are smooth (n, n)-tangles in [0, 1]2 with boundary at the 2n points p as in Definition 3.4.3.
• Morphisms are tangle cobordisms whose vertical boundary (i.e. the boundary in ∂[0, 1]2×I) consists
of the 2n line segments p× I, up to isotopy rel boundary.

The Carter-Saito movie moves are local, and so the definition of the diagrammatic category is essentially
the same:

Definition 3.8.5. The category TangDiagn is defined as follows:

• Objects are smooth (n, n)-tangle diagrams drawn in [0, 1]2.
• Morphisms are movies between tangle diagrams that preserve the boundary points p, modulo movie

moves.

The punchline is that the diagrammatic categories are sufficient for capturing all the information in the
topological categories.

Theorem 3.8.6. There is an equivalence of categories between Link and LinkDiag (and similarly between
Tangn and TangDiagn).

We can attribute this theorem to the combined work of Reidemeister and Carter–Saito but I should check
this. The proof is beyond the scope of this course, but we will make use of these equivalences all the time.

Remark 3.8.7. If you want to work with links in S3 instead, there are more diagrammatic moves to check.
In particular, we need to include the sweep-around move, which equates the sweep-around movie (swinging
a strand of the diagram around the 2-sphere through the point at infinity) with the identity movie. See
[MWW22].

We now know what it means for a link invariant to be functorial : it is a functor from the category Link
to its target category.

For our purposes, we will define the Khovanov functor

FKh : LinkDiag→ ggModZ

to be the composition of the functors

LinkDiag→ Kom(Mat(T L0))→ ggModZ.



NOTES ON KHOVANOV HOMOLOGY 31

The first functor is the unfortunately unnamed (projective) functor that Bar-Natan gives us in [BN05]12

The second is the TQFT associated to the Frobenius system (Z,A = Z[X]/(X2), ι,m,∆, ε) where the
morphisms are given by

ι : Z→ A
1 7→ 1

m : A⊗A → A
1⊗ 1 7→ 1

X ⊗ 1, 1⊗X 7→ X

X ⊗X 7→ 0

∆ : A → A⊗A
1 7→ X ⊗ 1 + 1⊗X
X 7→ X ⊗X

ε : A → Z
1 7→ 0

X 7→ 1.

Example 3.8.8. Khovanov homology over F2 is functorial; it defines a functor

LinkDiag
FKh−−−→ ggVectF

which, when precomposed with the equivalence

Link
∼=−→ LinkDiag,

defines a functor from the category of links to the category of bigraded vector spaces.

Jacobsson [Jac04] and Bar-Natan [BN05, Section 4.3] each showed that Khovanov homology over Z is
projectively functorial, meaning that it’s functorial up to a sign. In other words, suppose you take two
movies M and M ′ representing isotopic (rel boundary) cobordisms C and C ′. Then the corresponding
morphisms in ggModZ satisfy

Kh(M ′) = ±Kh(M).

This sign discrepancy can be fixed, and it has been by a whole host of authors [Cap08, CMW09, Bla10,
San21, Vog20, ETW18, BHPW23]. However, projective functoriality is enough for many, many important
applications of Khovanov homology, which we will see in the next section.

Exercise 3.8.9. (Highly recommended) The following is a version of Movie Move 14 (‘MM14’):

12We can’t call it FBN because ‘Bar-Natan homology’ means something else, which we will discuss later.
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Compute the induced map on Khovanov homology for each movie, by using the Reidemeister 1 chain maps
given in [BN05, Figure 5]. Show that the resulting morphisms have opposite signs.

You do not need to pass through the TQFT, but you are welcome to; the TQFT is a true (not projective)
functor.

Beware: Bar-Natan’s cobordisms flow downward with time. You can tell by looking at the domain and
target objects of the cobordisms.

You can also quickly convince yourself that these movies, when read backwards, actually do yield mor-
phisms with the same sign.

Maybe add section on general planar algebras, operads

4. Applications of Khovanov homology

As a functorial invariant for links in the 3-sphere and cobordisms in the 4-ball, Khovanov homology is
a natural tool to study the relationship between links in the context of the surfaces they bound. In this
section, we survey some of these applications. We start with some additional background on surfaces properly
embedded in B4. Once again, everything is smooth.

4.1. Surfaces in B4. We have already discussed cobordisms between links in S3. In this section, we will
use F to denote a cobordism (because they’re 2-dimensional, like ‘faces’). We reserve C for concordances,
which are cobordisms that are diffeomorphic to cylinders. I.e. without the context of their embedding, they
are cylinders. We will use the more precise term annulus instead of ‘cylinder’.

Definition 4.1.1. Let K0,K1 be knots in S3. A concordance C from K0 to K1 is an oriented cobordism
such that C ∼= S1 × I.

Equivalently, C : K0 → K1 is a concordance if it is a (smooth, oriented) connected cobordism with
χ(C) = 0.

If such a C exists, then we say K0 and K1 are concordant : K0 ∼ K1. This is an equivalence relation, and
the equivalence classes are called concordance classes.

In fact, we can turn the set of knots into a group (!) by modding out by concordance:

Definition 4.1.2. The smooth knot concordance group C is the group where

• the elements are the concordance classes knots in S3;
• the binary operation is induced by # (connected sum);
• the identity element is the class of slice knots, or knots that are concordant to the unknot;
• inverses are given by mirroring.

Remark 4.1.3. If you take a knife to a B4 and cut off a slice, the cut you make is a slice disk. I haven’t
checked if this is the historical origin of the text.

In general, a surface F properly embedded in B4 whose boundary is ∂F = K is called a slice surface for
K.
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Remark 4.1.4. We can equivalently say that a knot K ⊂ S3 is slice if it bounds a disk D in B4: if we
arrange D so that it is in Morse position with respect to the radial function on B4, then the boundary of a
neighborhood of its lowest 0-handle is an unknot. In other words, an annulus is just a punctured disk.

In this case, we say that D is a slice disk for K.

Again, this is actually a definition-theorem, and we will prove the theorem after seeing a quick example.

Example 4.1.5. Consider the right-handed trefoil K:

If we claim that the left-handed trefoil m(K) represents the inverse concordance class, then we must show
that K#m(K) is concordant to the unknot U .

It suffices to show that K#m(K) bounds a disk D embedded in B4. You can see a projection of a slice
disk in S3 in the following picture:

The disk is immersed in S3, and the only intersections are of the following form, called ribbon intersections:

The interior of the horizontal sheet can be pushed deeper into B4, so that the slice disk in B4 has no
self-intersection.

To verify that the concordance group really is a group, we need to check that

(1) # is well-defined on equivalence classes
(2) # is associative
(3) the equivalence class [U ] acts as the identity
(4) for any K, K#m(K) is slice.

You can convince yourself that the binary operation # on the set of knots is both associative and commu-
tative; if you want to think about this in more detail, see [Ada04]. Once we show that # is well-defined,
showing that [U ] is the identity element is also easy.

It remains to show that # is well-defined, and thatK#m(K) is slice. Both proofs use standard topological
arguments.

Claim 4.1.6. # is a well-defined binary operation on the set of concordance classes.

Proof. To see that # is a well-defined binary operation on concordance classes, consider knots K,K ′, J ⊂ S3,
where K ∼ K ′. Then there is some concordance C : K → K ′, a cobordism in §3 × [0, 1]. Pick basepoints
p ∈ K, p′ ∈ K ′ and isotope K ′ so that p′ = p (as points in S3). Pick an arc γ : [0, 1] ↪→ C such that γ(0) = p
and γ(1) = p′.

Perform a boundary-preserving ambient isotopy to ‘straighten out’ γ; that is, to arrange so that γ(t) ∈
S3 × {t}. (This is possible because the codimension of γ in S3 × [0, 1] is 3, and codimension 3 submanifolds
can always be unknotted.) We will now assume that C is in such a position so that γ is of the form p× [0, 1].
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Now delete a small neighborhood of γ (i.e. ν(p) × [0, 1] ∩ C) in C. Pick a point q ∈ J and delete it,
forming a (1, 1) tangle J − ν(q) whose closure is J . Shrink this tangle so that it fits within ν(p).

Finally, glue C − (ν(p)× [0, 1]) with (J − ν(q))× [0, 1] to form a concordance from K#J to K ′#J .

□

Aside 4.1.7. How much should one write for such a proof? You might notice that, for example, the last
sentence of the preceding proof is not super duper precise. However, the figure helps you understand the
notation, and also the underlying concept is quite simple. Also, we were careful to define the category
LinkDiag so that we can make diagrammatic arguments.

As a human who uses language, I don’t have a perfect answer for ‘how much detail to show’ – this comes
from getting to know the common vocabulary, techniques, facts, and tricks used in the community you are
writing for.

We also give a (more terse) proof sketch that [m(K)] = [K]−1:

Claim 4.1.8. For any knot K ⊂ S3, K#m(K) is slice.

Proof. The identity cobordism K → K is a concordance. Pick a point p ∈ K and delete p× [0, 1] from the
identity cobordism. The resulting surface can be properly embedded in B4 and viewed as a slice disk for
K#m(K).

□

Remark 4.1.9. One can also define a notion of concordance between links. However, the notion of a ‘link
concordance group’ isn’t obvious, and is an area of active research.

4.2. Obstruction to ribbon concordance. In Example 4.1.5, we envisioned a slice disk by seeing that
its projection to S3 had only ribbon singularities. The following definition gives a more general definition of
such phenomena.

Definition 4.2.1. Let F : L0 → L1 be a cobordism embedded in S3 × I such that the second coordinate
gives a Morse function. We say F is ribbon if, with respect to the Morse handle decomposition, F contains
only 0- and 1-handles.
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A ribbon cobordism that D : ∅→ K that is a disk is called a ribbon disk, and is a special case of a slice
disk.

A knot K that bounds a ribbon disk is called a ribbon knot.

Example 4.2.2. Here is a movie for the ribbon disk for the square knot that we visualized in Example
4.1.5:

From the definition, the ‘ribbon concordant’ relation is not symmetric. If we flip a ribbon concordance
containing a 0-handle upside-down (by reversing the Morse function), the upside-down concordance C̄ clearly
has a 2-handle.

Exercise 4.2.3. Draw a movie for the ribbon disk for the Stevedore knot 61 implied in the diagram below:

Remark 4.2.4. Unfortunately, we naturally would want to say ‘61 is concordant to the unknot’, which is
true, but not if we add the word ‘ribbon’. Mathematically it makes more sense to say U is ribbon concordant
to 61, and this is the language used in [LZ19]. Historically, some people defined ribbon surfaces by taking the
descending Morse function and requiring only 1- and 2-handles, so be careful. For my sanity, I will always
specify the direction of the cobordism as a morphism.
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Remark 4.2.5. In terms of movies, a ribbon disk is a ‘happy movie’, where the only critical moments are
births of circles and merges of circles. There are no scenes where circles split or die.

Conjecture 4.2.6. (Open: Slice-Ribbon Conjecture) All slice knots are ribbon.

It is clear that ribbon disks are slice, so any ribbon knot is a slice knot. However, not all slice disks are
(isotopic to) ribbon disks (see Aru Ray’s notes, Proposition 1.8). So, the conjecture posits that if K bounds
a slice disk, it bounds a (potentially non-isotopic) ribbon disk.

Remark 4.2.7. We will see soon that there are knots that bound non-isotopic ribbon disks [HS21].

Levine–Zemke showed that we can use Khovanov homology to obstruct the existence of ribbon cobordisms
between two knots:

Theorem 4.2.8 ([LZ19]). If C : K0 → K1 is a ribbon concordance, then the morphism

Kh(C) : Kh(K0)→ Kh(L1)

is injective, with left inverse Kh(C̄).

Here are some immediate corollaries that follow from basic algebra:

Corollary 4.2.9 ([LZ19]). Suppose C : K0 → K1 is a ribbon concordance.

(1) At any bigrading, Khi,j(K0) ↪→ Khi,j(K1) as a direct summand.
(2) If additionally there is a ribbon concordance C ′ : K1 → K0, then Kh(K0) ∼= Kh(K1).

Seriously, prove these for yourself. There are four more corollaries in the paper, if you’re interested.
The proof uses a topological lemma first appearing in Zemke’s [Zem19]. This paper sparked a whole series

of papers proving similar or related results for other functorial link homology theories.
The proof of this lemma is embedded in the proof of Zemke’s main theorem:

Lemma 4.2.10 ([Zem19]). Let C : K0 → K1 be a ribbon concordance, and let C̄ be the upside-down (and
opposite orientation) concordance to C, a morphism K1 → K0.

If a movie presentation for C has n births and n saddles (note that the Euler characteristic of a concordance
is 0), then there is a movie presentation for C̄ ◦ C with n births, n merge saddles, n split saddles that are
dual to the merge saddles, and n deaths.

In particular, the lemma tells us that C̄ ◦C is isotopic to a cobordism K0 → K0 that looks like the identity
cobordism for K0 with n spheres tubed on. Because of nontrivial knot theory for surfaces in dimension 4,
this cobordism might not be isotopic to the identity cobordism, but nevertheless, Khovanov homology can’t
tell because of the neckcutting relation:

Proof of Theorem 4.2.8. Take C and C̄ as in Lemma 4.2.10. In T L0, by neckcutting, we see that the
morphism C̄ ◦ C is equal to the morphism with 2n summands that are all of the form idK0

disjoint union
with n spheres, and all summands have just one dot somewhere. After deleting the summands containing
an undotted sphere, the only remaining morphism is the one consisting of idK0 and n dotted spheres, which
evaluate to a coefficient of 1. Therefore C̄ ◦ C = idK0 as morphisms in T L0.

By (projective) functoriality of Kh, we have Kh(C̄) ◦ Kh(C) = Kh(C̄ ◦ C), and the remainder of the
theorem follows. □

https://people.mpim-bonn.mpg.de/aruray/documents/slicenotes.pdf
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4.3. Lee homology and the s invariant. The most important numerical invariant(s) that you can distill
from Khovanov homology techniques is Rasmussen’s s invariant, which was introduced in [Ras10]. It is a
‘concordance homomorphism,’ i.e. a homomorphism of groups

s : C → Z.

Rasmussen showed that s gives a lower bound on the slice genus of a knot. The following definition defines
two knot invariants:

Definition 4.3.1. A Seifert surface for a knot K ⊂ S3 is an oriented surface embedded in S3 whose
boundary is K. The 3-ball genus or Seifert genus of a knot K, g3(K), is the minimal genus of a Seifert
surface for K:

g3(K) = min{g(F ) | F ↪→ S3 with ∂F = K}
Analogously, the 4-ball genus or slice genus of a knot K ∈ S3 is

g4(K) = min{g(F ) | F ↪→ B4 with ∂F = K},
the minimal genus of a slice surface for K.

Example 4.3.2. Here is a Seifert surface for the right-handed trefoil, otherwise known as the torus knot
T2,3:

Since any Seifert surface can be ‘punched in’ to B4 to become a slice surface, for any knot K, we have
g4(K) ≤ g3(K), and therefore s also gives a lower bound on the Seifert genus of K.

Rasmussen used the s invariant to give a combinatorial proof of the (topological) Milnor conjecture:

Theorem 4.3.3 ([KM93], [Ras10]). The slice genus of a torus knot T (p, q) is

g4(T (p, q)) = g3(T (p, q)) =
(p− 1)(q − 1)

2
.

I bet the first Seifert surface you draw for T (p, q) is the minimal genus (both g4 and g3!) surface!
Another major application of Rasmussen’s s invariant in 4D topology is Piccirillo’s proof that the Conway

knot is not slice [Pic20]; this was a long-standing conjecture until she proved it in less than 8 pages. This is
an Annals of Mathematics paper. For those of you interested in 4-manifolds and using Kirby calculus, this
is a potential final project idea.

The s invariant relies on Lee homology, a version of Khovanov homology introduced by E. S. Lee in
her study of Khovanov homology of alternating knots [Lee05], very soon after Khovanov homology was
first introduced. We now understand Lee homology as the version corresponding to the Frobenius algebra
A′ = Q[X]/(X2 − 1).

In this section, we will discuss Lee homology and Rasmussen’s s invariant, as well various related ideas,
including extremely useful algebraic constructions such as filtration spectral sequences and their relationship
to torsion order. This will take a while, but these constructions were fundamental to the various applications
of Khovanov homology in the following two decades.

4.3.1. Lee homology and quantum filtration. In this section we replace Khovanov’s TQFT A with Lee’s,
which we denote using primes (e.g. A′), following Rasmussen’s paper [Ras10]. In future sections of these
notes we will likely use more specific notation.

Lee’s TQFT comes from the Frobenius system

(Q,A′ = Q[X]/(X2 − 1), ι′,m′,∆′, ε′)
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where the structure morphisms are given by

ι′ : Q→ A′

1 7→ 1

m′ : A′ ⊗A′ → A′

1⊗ 1 7→ 1

X ⊗ 1, 1⊗X 7→ X

X ⊗X 7→ 1

∆′ : A′ → A′ ⊗A′

1 7→ X ⊗ 1 + 1⊗X
X 7→ X ⊗X + 1⊗ 1

ε′ : A′ → Q
1 7→ 0

X 7→ 1.

The most important thing to notice right now is that these maps are not grading preserving! After all,
if you mod out by a non-quantum-homogeneous polynomial X2 − 1, you will not get a graded theory. But
since degX2 = 4, you do get a Z/4Z-quantum-graded theory, and this will be used in Rasmussen’s proofs.

Lee originally described her differentials as a perturbation of Khovanov’s. Indeed, we may write

dLee = dKh +Φ

where Φ consists of the red terms in the m′ and ∆′ morphisms above.
Check by inspection that while dKh preserves quantum grading, Φ increases quantum grading by 4. So

even though dLee does not preserve grading, the Lee chain complex

CLee(K) = (CKh(K), dKh +Φ)

is filtered :

Definition 4.3.4. A filtration of a chain complex (C, d) is a sequence of subcomplexes F• of (C, d)

· · · ⊇ Fi ⊇ Fi+1 ⊇ Fi+2 ⊇ Fi+3 ⊇ · · ·

such that ⋂
i

Fi = ∅ and
⋃
i

Fi = C

and where d(Fi) ⊆ Fi.
A chain map f : (C, d)→ (C′, d′) between filtered complexes C =

⋃
Fi and C′ =

⋃
F ′
i is a chain map that

respects the filtration: f(Fi) ⊆ F ′
i .

Example 4.3.5. Here is a cartoon of a filtered chain complex:

Warning 4.3.6. This is only one type of filtration; see a homological algebra book for a more general
definition. We will in particular be using finite length filtrations, where only finitely many Fi are not ∅ or C.
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The filtration on the Lee complex is very special, because it is defined by a filtration grading grq on a free
module generated by a distinguished, grq-homogeneous basis.

Let Kg(L) denote the set of pure tensors that generate the Khovanov chain group CKh(L). Each chain

is a finite sum x =
∑k

i=1 cigi where gi ∈ Kg(L), and ci ∈ Q×. The filtration grading is defined for non-
homogeneous chains by the following formula:

(4) grq(

k∑
i=1

cigi) = min{grq(gi)}ki=1.

Observe that, by this definition, for all j ≤ grq(x), we have x ∈ Fj ; meanwhile, for j ⪈ grq(x), x ̸∈ Fj .

Remark 4.3.7. Filtered complexes give rise to filtration spectral sequences, which we will likely discuss later
on. For now, just know that because the Khovanov differential is the grading-preserving piece of the Lee
differential, there is a spectral sequence relating Khovanov homology to Lee homology.

4.3.2. Lee’s basis and canonical generators. At first, the Lee complex might look more complicated than the
Khovanov one, but this is only because we made an inconvenient choice of distinguished basis, because in
the Khovanov TQFT, we wanted a homogeneous basis. Note that A′ is still isomorphic, as a non-graded
vector space, to what we will still call V = Qv+ + Qv−, even though we’ve switched to Q coefficients, so
we’re technically working with V ⊗Z Q. Lee introduced a much better distinguished basis for her TQFT,
where

a = v− + v+ = 1 +X b = v− − v+ = 1−X.
Notice that these are the factors of X2 − 1; therefore, you already automatically know that m′(a ⊗ b) =
m′(b⊗ a) = 0, which is nice. Here are the other morphisms, in this new basis:

Notation 4.3.8.

ι′ : Q→ A′

1 7→ a− b

2

m′ : A′ ⊗A′ → A′

a⊗ a 7→ 2a

a⊗ b, b⊗ a 7→ 0

b⊗ b 7→ −2b

∆′ : A′ → A′ ⊗A′

a 7→ a⊗ a

b 7→ b⊗ b

ε′ : A′ → Q
a, b 7→ 1

You may wish to check that this indeed defines a Frobenius algebra by checking the required relations.

With a Frobenius algebra structure so simple (and with 20 years of reflection and hindsight), one would
expect that the homology would be very easy to compute. Indeed, Lee showed that Lee homology is very
simple:

Theorem 4.3.9 ([Lee05], Theorem 4.2). For a link L with ℓ components, there is an isomorphism of
(ungraded) vector spaces Lee(L) ∼= (Q⊕Q)ℓ.

Moreover, she knows the homology classes that generate the 2ℓ-dimensional homology; these correspond to
the 2ℓ orientations of the link! These special homology classes are now known as Lee’s canonical generators.
And are so, so, so important.

Here is an algorithm used for obtaining Lee’s canonical generators.
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Algorithm 4.3.10. Suppose we are given a link L, an orientation o on L, and a diagram D of L. Fix a
checkerboard coloring of the complement of D in the plane. (A standard convention is to leave the infinite
region unshaded.)

Let Do denote the oriented resolution: that is, resolve each crossing so that the orientations of the arcs
are all preserved. The resulting circles have induced orientations. For each circle, draw a small dot slightly
to the left of any point on the circle (based on the orientation of the circle).

• If the dot lands in a shaded region, label the circle a.
• If the dot lands in an unshaded region, label the circle b.

Let so denote the chain correspond to the above labeling of the resolution Do

Exercise 4.3.11. Prove that so is closed (i.e. in the kernel of the differential).

Lee’s canonical generators are the set of homology classes

{[so] | o is an orientation for L}.
In the remainder of this (subsub)section, we give a proof of Lee’s Theorem 4.3.9 that is due to Bar-Natan–

Morrison [BNM06]. There are many versions of Lee’s proof in the literature. They all involve similar ideas
to those in the original proof.

First of all, we need to set up the Bar-Natan category that works for Lee homology. In particular, we know
that X2 = 1, so now ‘two dots’ must evaluate to 1, rather than zero. Below are the Bar-Natan categories we
will use. Beware that the notation is not standard, and in fact does not appear anywhere in the literature
that I know of ([BNM06] calls these categories ‘Cob1(∂T )’). However, we use this primed notation to be
consistent with the notation used in Rasmussen’s s invariant paper [Ras10].

Definition 4.3.12. The preadditive categories T L′
n for n ∈ N ∪ {0} have the same objects as T Ln. The

morphisms are also cobordisms, but modulo these slightly modified relations:

Remark 4.3.13. If you wanted to, you could verify that these relations still hold. The dotted identity still
means ‘·X’. What’s more interesting is coming up with a new decorated cobordism category that innately
uses the {a,b} basis for A′. (So, define new kinds of dots.) What would your morphism relations look like,
with these new decorations? There is an answer in the literature, and major hints in the remainder of the
section. Also, I could have phrased this as an Exercise but I would not want to grade this problem!

We will need an additional algebraic construction; we follow the exposition in [BNM06, Section 3]. Recall
that in any category C, any endomorphism p ∈ HomC(X,X) satisfying p2 = p ◦ p = p is called a projection.
We say that p is idempotent. The Karoubi envelope of C, denoted by Kar(C), is an enlargement of the
category C that includes all images of idempotent endomorphisms:

Definition 4.3.14. The Karoubi envelope (or idempotent completion) of C, denoted by Kar(C), is the
category where

• objects are pairs (X, p) where X ∈ Ob(C), p ∈ HomC(X,X), and p2 = p; and
• morphisms from (X, p) to (X ′, p′) are the morphisms f ∈ HomC(X,X

′) that respect the projections:
f ◦ p = p′ ◦ f .

In other words, if you ever find a projection p in (the morphisms of) C, then its image im(p) is an object
in Kar(C). In particular, every object in C also appears in Kar(C), in the form (X, idX).

Example 4.3.15. The Karoubi envelope occurs in the wild! For example, let Open be the category
consisting of

• objects: open subsets of Euclidean space (all Rn for n ∈ N)
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• morphisms: smooth maps between these open sets.

The Karoubi envelope of Open turns out to be the category of all smooth (closed, finite-dimensional)
manifolds Man. For example, while Sn is not an open subset of any Rm, it is the image of the projection

p : U → U

x 7→ x

|x|

where U is the open subset Rn−{0} ⊂ Rn. This example comes from the ncatlab page for ‘Karoubi envelope,’
[nLa24].

Here are some more important algebraic facts that are not hard to prove.

Proposition 4.3.16. Let C be an additive category.

(a) If p ∈ Hom(X,X) is a projection, then so is id − p ∈ Hom(X,X). Thus in Kar(C), X ∼= im(p) ⊕
im(id− p).

(b) Let A and B be chain complexes in Kom(C). If A and B are chain homotopy equivalent in
Kom(Kar(C)), then they were also homotopy equivalent in Kom(C).

Exercise 4.3.17. Prove Proposition 4.3.16.

Remark 4.3.18. Recall from, say, Mat167 that involutions are related to projections: if P is a projection,
then I − 2P is an involution. Geometrically, this involution reflects across the plane that P projects onto,
because you (a point in Rn) are being translated by a vector to the plane, and then you overshoot by traveling
by that vector again.

Conversely, given an involution S, the eigenprojections of S are given by I±S
2 . If P is an eigenprojection

for S, then SP = λP where λ = ±1. These correspond to im(P ) and im(P )⊥, because P (I − P ) = I.

For example, the projection P =

1 0

0 0

 projects points in R2 to the x-axis. The projection I − P

projects the y-axis. The involution (reflection) I − 2P reflects across the x-axis. This fixes the points on the
x-axis (λ = 1) but reflects the points on the y-axis (λ = −1).

Now consider the additive category Mat(T L′
1). The object with no closed components

has an interesting involution: the ‘·X’ map (however, we can only use this terminology after passing through
the TQFT, which we have not). Recall that this morphisms is just the dotted identity map. We will call
this endomorphism b for \bullet, following Bar-Natan–Morrison. The ‘two dots = 1’ relation in T L′ means
that b2 = id. The corresponding idempotents for this involution are

r =
id + b

2
and g =

id− b
2

and they satisfy r2 = r, g2 = g, r + g = id, rg = 0, br = r and bg = −g. So, in Kar(Mat(T L′
1)), we have a

new decomposition of our object

= r ⊕ g

In Mat(T L′
n), for every object containing no closed components, we have a similar story; for each strand,

the dotted identity (with the dot on the sheet corresponding to that strand) is an involution, and we get a
projections r and g for each strand. In short, an n-strand crossingless matching has 2n colorings that assign
either r or g to each strand. The 2n colors correspond to the 2n projections {r, g}⊗n.

Let’s now study the chain complex associated to a crossing in the category Kom(Kar(Mat(T L′
2))):
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Above, we claim that first two summands are contractible. To show this, it suffices to see that the red
and green saddle maps are chain homotopy equivalences. To see this, try to come up with inverses for these
saddle maps. Therefore the chain complex for the crossing is equivalent to the last summand, which has no
differential. The generators of homology are therefore the four objects drawn.

Now consider a link with n crossings. A neighborhood of every crossing (a diagram representing a
complex in Kom(Kar(Mat(T L′

2))) is equivalent to the complex above with 0 differential. The surviving
homology classes are therefore obtained by gluing these complexes in the spaghetti-and-meatballs picture;
more precisely, by tensoring together these complexes in a planar algebra. Observe that if, upon tensoring, a
single strand is colored by red and green, that diagram dies, because rg = 0. Make sure this really actually
makes sense to you. The only remaining objects are complete resolutions where each planar circle is colored
entirely either red or green.

Aside 4.3.19. We never carefully defined what a planar algebra is, mostly because it is quite intuitive what
‘gluing’ means (and our intuition is correct).

Here is a slightly more precise definition for our particular setting, though we will remain somewhat vague;
we will often refer to this whole story as the ‘spaghetti-and-meatballs’ picture.

Our T Ln categories are categorifications of the Temperley-Lieb algebras TLn(δ). You can look these up,
but the main point is that these are generated by crossingless tangles with 2n endpoints, and any time you
see a closed component, it evaluates to some δ ∈ R, where R is the base ring.

Consider a planar tangle T properly embedded in a disk with a finite number of smaller input disks
removed where each boundary component contains an even number of endpoints.

Suppose the boundary of the input disk Di contains 2ni tangle endpoints. Then we can input (i.e. glue)
any object of TLni

into this hole. If the boundary of the big disk (the dinner plate) contains 2n0 endpoints
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of the tangle, then T gives us a map of R-algebras

TLn1
⊗ TLn2

⊗ · · · ⊗ TLnk
→ TLn0

.

Similar, for the categories T Lni , the tangle T gives us a Z-linear multifunctor

T Ln1
× T Ln2

× · · · × T Lnk
→ T Ln0

.

Exercise 4.3.20. In this exercise, you will fill in some details in the proof above of Lee’s structure theorem.

(a) Prove that

.

(b) Explain carefully (i.e. at the level of homological algebra, planar algebras, and Karoubi envelopes)
why rg = 0 implies that gluing a red strand to a green strand results in an object that is equivalent
to the zero object in Kar(Mat(T L′

1)).

This concludes the proof of Theorem 4.3.9, as we stated it. However, it remains to show that the surviving
objects correspond to orientations on the link diagram, as described in Algorithm 4.3.10. We leave this as
an exercise for the reader.

Exercise 4.3.21. Let P be a surviving {r, g}-colored complete resolution of a link diagram D, in the proof
of Lee’s structure theorem.

(a) Prove that P satisfies the following property: if two circles in P both abut (a small neighborhood
of) a crossing c in D, then their colors are different (or more precisely, orthogonal!).

(b) Use this to argue that P corresponds to some so. Perhaps use a counting argument.
(c) Determine a formula for the homological grading of the canonical generator [so]. The quantum

filtration level is harder to compute, and is captured by a generalization of the s invariant to links.

Warning 4.3.22. Nowadays, when discussing other TQFTs, we also use the term ‘Lee homology’ to mean
a very specific construction that results in a more degenerate homology theory.

Universal Khovanov homology is the theory over the very general Frobenius algebra k[h, t,X]/(X2−hX−
t). The corresponding ‘Lee homology’ (sorry about the confusing language) is obtained by inverting the

discriminant D =
√
h2 + 4t (see [Kho06b]). In Lee’s original theory, we set h = 0 and t = 1, so D =

√
4 = 2.

So, we didn’t need to work over k = Q; we just needed k to contain 1
2 . Otherwise, we’d be dividing by

0. That is to say, you shouldn’t do Lee homology over F2 if you’re not ok with localizing at 0 (I’m not!);
use the Frobenius algebra F2[X]/(X2 −X) instead. This theory appears in earlier literature as ‘Bar-Natan
homology’; nowadays, ‘Bar-Natan homology’ typically refers to the theory for F2[h,X]/(X2− hX), which is
more powerful.

Finally, also notice that for the original Frobenius algebra, the discriminant is 0 (which happens when the
two roots of the quadratic are the same), so we can’t actually invert the discriminant to get a corresponding
‘Lee homology’.

For my sanity, I prefer to call the ‘corresponding Lee homology’ to a flavor of Khovanov homology as the
‘localized homology’ because we localize at the discriminant.

4.3.3. Defining the s invariant. We now return back to [Ras10]. Throughout, let K be a knot. Then
Lee(K) ∼= Q⊕Q. Rasmussen’s s is defined using the filtration grading grq on the Lee complex.

First note that our definition for the filtration grading of a chain x ∈ CLee(K) in (4) is equivalent to

grq(x) = max{j ∈ Z | x ∈ F j(CLee(K))

where F • is the filtration induced by grq on the homogeneous distinguished generators.
This induces a filtration grading on the homology class [x] ∈ Lee(K) by

grq([x]) = max{grq(y) | y is homologous to x}.
Rasmussen defines two knot invariants, smax and smin, using this filtration grading on Lee homology

([Ras10, Definition 3.1]):

(5) smin(K) = min{grq([x]) | [x] ∈ Lee(K), [x] ̸= 0}
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(6) smax(K) = max{grq([x]) | [x] ∈ Lee(K), [x] ̸= 0}

Prove to yourself that (1) these two values are always odd integers and (2) these are knot invariants.
The s invariant is defined to be the average of these two odd integers:

Definition 4.3.23. For a knot in K ⊂ R3,

s(K) =
smax(K) + smin(K)

2
.

In fact, s(K) is always an even integer because of the following proposition, whose proof is the focus of
the remainder of this section.

Proposition 4.3.24. smax = smin + 2. Therefore s(K) = smax − 1 = smin + 1.

For a knot K, the quantum gradings of the homogeneous generators are all odd. (Why? Prove this to
yourself! I do have a favorite proof of this.) Now recall that dLee = dKh + Φ where Φ raises grq by 4, and
so we concluded that CLee(K) is Z/4Z-quantum graded. But in fact, we only have generators in degrees 1
mod 4 and 3 mod 4. We get a decomposition of the chain complex

(7) CLee(K) ∼= CLee1(K)⊕ CLee−1(K),

where CLeei(K) is the summand at the Z/4Z-quantum degree i mod 4.

Lemma 4.3.25 (cf. Lemma 3.5 of [Ras10]). Let o be an orientation of K, and fix a diagram D for K. Then
the two cycles so ± sō are contained in two different Z/4Z-quantum grading summands of CLee(D).

Proof. The Lee generators so and sō both live in the oriented resolution Do of a diagram D for K. The
quantum grading of any homogenenous generator g at Do is given by

grq(g) = grh(Do) + p(g) + n+ − n−
where

• grh(Do) is the homological degree at the resolution Do and
• p(g) = #(v+ in g)−#(v− in g) (following notation in [BN02]).

For the purposes of this proof, we only need to worry about p(g), since the actual quantum gradings for all
generators appearing in this proof differ from this local p grading only by an overall shift (of grh(Do)+n+−
2n−).

Define an involution τ : V → V by v− 7→ v−, v+ 7→ −v+. Extend this to tensor products V ⊗k, and in
particular, V ⊗|Do|, which is isomorphic to CLee(Do) up to the global shift we discussed.

Observe that

(1) τ acts as identity on generators (pure tensors) containing an even number of instances of v+; call
the span of these generators CLeeeven(Do).

(2) τ acts as −1 on generators with an odd number of instances of v+; call the span of these generators
CLeeodd(Do).

Since the number of tensor factors (|Do|) is fixed, these two summands of CLee(Do) are at two different
Z/4Z quantum gradings.

Since a = X − 1 and b = X + 1, we have τ(a) = b and τ(b) = a; therefore

τ(so) = sō.

Therefore

• τ acts as identity on the sum so + sō, so we must have so + sō ∈ CLeeeven(Do).
• τ acts as −1 on the difference so − sō, so we must have so − sō ∈ CLeeodd(Do).

Switching p out for grq (by applying the quantum shift), we still have that the cycles so±sō are supported
in different Z/4Z-quantum grading summands. □

Remark 4.3.26. In general, of L has n components, then the chains CKh(L) are all supported in quantum
gradings n mod 2. Lemma 3.5 of [Ras10] gives a more general statement than our discussion above. The
definition for the s-invariant can be extended to oriented links, though the filtration gradings of the canonical
classes behave more complexly; see [BW08].
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Lemma 4.3.25 actually tells us more. Because Lee(K) is 2-dimensional, we now know that we can choose
the basis {so ± sō}, and that these generate the summands of the direct sum decomposition on homology

Lee(K) ∼= Lee1(K)⊕ Lee−1(K).

arising from the decomposition of the chain complex in (7). We conclude that

(8) smax(K) ⪈ smin(K).

Furthermore, we must have

(9) smin(K) = grq([so]) = grq([sō])

because both have components in the Z/4Z-quantum grading summand corresponding to smin(K).
To finish the proof of Proposition 4.3.24, we will need another lemma, which will let us bound the difference

between smax and smin.

Definition 4.3.27. A map f : C → C ′ between filtered chain complexes (of the form in Definition 4.3.4 is
filtered of degree k if f(Fi) ⊆ F ′

i+k.

Lemma 4.3.28 ([Ras10], Lemma 3.8). Let K1,K2 be knots. There is a short exact sequence

0→ Lee(K1#K2)
p∗

−→ Lee(K1)⊗ Lee(K2)
m∗

−−→ Lee(K1#K2)→ 0

where p∗ and m∗ have filtered degree −1.

Proof. Let D1, D2 be diagrams for K1,K2, respectively. We have the following mapping cone:

Note that the first diagram isn’t exactly D1#D
r
2, but you can visualize an isotopy that spins the Dr

2 around
the x-axis so that it looks like a disjoint union. So, the Lee complex is chain homotopy equivalent to
CLee(D1#D

r
2), which is in turn obviously isomorphic to CLee(D1#D2). This yields a short exact sequence

(see Section 3.2):

0→ CLee(K1#K2){1}
i−→ CLee(K1#K

r
2)

p−→ CLee(K1 ⊔K2)→ 0

where CLee(K1#K
r
2) is the chain homotopy representative given by the specific diagram as shown above,

and the quantum shift comes from the internal quantum shift in the Khovanov chain complex construction.
This gives you a long exact sequence on Lee homology. But because of Lee’s structure theorem, we know
the dimensions of the Q vector spaces in the sequence. Since 2 + 2 = 4, the long exact sequence splits (yay
vector spaces!), i.e. i∗ = 0.

We conclude that we have a short exact sequence

0→ Lee(K1#K2)
p∗

−→ Lee(K1)⊗ Lee(K2)
m∗

−−→ Lee(K1#K2)→ 0,

but we’ve kind of discarded the internal quantum degree shifts when we write this down. If we’re careful and
keep track of everything (i.e. keep track of orientations), we can figure out that both p∗ and m∗ are filtered
of degree −1, as follows.

Without loss of generality, we can choose diagrams D1, D2 so that our crossing is positive. Then the
actual mapping cone would be
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By construction, m (secretly m′ because we are doing Lee homology)

is filtered of degree 0. Also, tautologically, p

is filtered of degree 0. Therefore the actual SES maps

(that we meant to use to obtain our LES) are actually filtered of degree −1.
Alternatively, Rasmussen suggests that we first note that the maps must be filtered of some degree,

because, without shifts, m∗ is induced by a saddle (filtered degree −1) and p∗ is induced by a quotient (a
filtered degree 0 operation). So, he instead just uses the case K1,K2 = U to figure out the filtered degree of
these maps, and concludes that they are indeed both −1.

□

Proof of Proposition 4.3.24. Now let’s apply Lemma 4.3.28 to K1 = K and K2 = U ; we get a short exact
sequence

0→ Lee(K)
p∗

−→ Lee(K)⊗ Lee(U)
m∗

−−→ Lee(K)→ 0

where each nontrivial map has filtered degree −1. We know Lee(U) = Qa⊕Qb. We also know that one of
{so, sō} has label a on the component where the connected sum operation occurs; let’s call this generator
sa, and call the other sb.

We know that grq([sa + εsb̄]) = smax, where ε is either 1 or −1. In any case, we have

m∗([sa + εsb̄]⊗ a) = [sa].

Because m∗ is filtered of degree −1, it can only decrease the filtration degree by at most 1, i.e.

grq([sa]) ≥ grq([sa + εsb̄]⊗ a)− 1,

i.e.

grq([sa + εsb̄]⊗ a) ≤ grq([sa]) + 1.

By (9), we have

smax(K)− 1 ≤ smin(K) + 1,

and by (8), we conclude that

smax(K) = smin(K) + 2.

□
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4.3.4. s is a concordance homomorphism. We begin this section with the properties of s that show it is a
concordance homomorphism.

These are proven in [Ras10], but that I leave for you to ponder on your own. If you aren’t able to prove the
statements on your own (but with the hints provided), feel free to look at Rasmussen’s proof (and understand
it) and then put it into your own words.

Exercise 4.3.29 ([Ras10], Proposition 3.9). (Maybe hard?) Let K̄ denote the mirror of K. Prove that
s(K̄) = −s(K).

Hint: Let D be a diagram for K, and let D̄ be the diagram where all the crossing information is reversed.
Explain briefly why, in the category of chain complexes of filtered vector spaces over Q, we have

CLee(D̄) ∼= CLee(D)∗

where (·)∗ is the dualizing functor that

• sends v± 7→ v∗∓; here grq(v
∗
∓) = ∓1; I don’t like this notation... The point is that under the degree-

preserving isomorphism V ∗ ∼= V , we have v∗− 7→ v−. You can therefore think of the functor (·)∗ as
taking v± 7→ v∓.

• reverses all quantum shifts (in fact, all quantum gradings);
• reverses all homological gradings and is contravariant on morphisms.

Remark 4.3.30. In Khovanov’s notation, the dualizing functor is denoted by (·)!. In other contexts, you
may also see it written as (·)∨, though the diagram mirroring rule might be different (e.g. reflect across
x-axis). Nevertheless, however you mirror a diagram, there is a clear identification of chains for D and for
D̄.

Exercise 4.3.31 ([Ras10], Proposition 3.11). (Maybe hard?) For knots K1,K2, prove that s(K1#K2) =
s(K1) + s(K2).

Hint: Use Lemma 4.3.28 for bounds on the filtration degree of morphisms, and then flip your morphisms
upside down and use the result of Exercise 4.3.29 too.

4.3.5. Behavior of canonical generators under cobordisms. In the proof of Proposition 4.3.24, we saw how
the filtration degree of maps helped us bound the behavior of s. Now, we will study the behavior of s under
cobordisms, by using the fact that every cobordism can be decomposed into elementary cobordisms, and we
know the filtration degree of the Lee map associated to each elementary cobordism F : it’s χ(F )!

But this is not enough to know what happens to s: after all, the induced map could be 0.

Remark 4.3.32. Our discussion here will differ from Rasmussen’s original paper, mainly because it was
written before Bar-Natan’s categories were introduced. (Rasmussen posted [Ras10] in February 2004, whereas
Bar-Natan posted [BN05] in October 2004.) Rasmussen carefully proves that the Reidemeister maps in Lee
homology are filtered of degree 0. For us, this fact is almost immediate because Bar-Natan’s proof of
Reidemeister invariance (in the most general S, T, 4Tu cobordism categories) is grading-preserving. Instead,
we can imagine passing first through a TQFT for the Frobenius algebra Z[T,X]/(X2 = T ), where degq(T ) =

−4, and then setting T = 1 (and then localize at
√
D = 2, or just ⊗Q). This preserves the filtration grading,

because now all the arrows that used to have a T coefficient (and were grading-preserving) are now increase
filtration degree by 4.

We know the Reidemeister moves are chain homotopy equivalences in Bar-Natan’s category, so these
maps are nonzero. We are more worried about compositions of Morse moves. Luckily, we have the following
lemma:

Lemma 4.3.33 (see proof of Proposition 4.1 in [Ras10]). Let S : L → L′ be a cobordism with no closed
components. Let o be an orientation on L. Then

ϕS([so]) =
∑
I

aI [so′I ]

where {o′I} is the set of all orientations on L′ that are compatible with (L, o) on the bottom boundary of S,
and where all coefficients aI are nonzero.

Let us state this another way, using Rasmussen’s vocabulary. There are two types of connected components
F of the cobordism S:
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• F is of the first type if it has a boundary component in L. In this case, the chosen orientation on the
bottom boundary of F determines the orientation on the rest of the boundary components on L′.

• F is of the second type if it only has boundary on L′. Then either orientation of F is compatible
with (L, o). This yields two different possible sets of orientations on the components of L′ at the
(top) boundary if F .

An orientation on F is permissible (with respect to (L, o)) if the bottom boundary of F agrees with (L, o).
The lemma therefore states that the set of orientations {o′I} is the set of top boundary orientations of the
set of permissible orientations on S.

Remark 4.3.34. Requiring that S contain no closed components obstructs the situation where you have,
say, a closed undotted sphere that makes the entire cobordism evaluate to 0.

Remark 4.3.35. Clarify this on Friday add remark on cobordism boundary orientation (in and out).

Before we prove Lemma 4.3.33, let’s state the important corollaries:

Corollary 4.3.36 (Proposition 4.1 of [Ras10]). If S is an oriented cobordism from (L, o) to (L′, o′) that is
weakly connected, i.e. every component of S has a boundary component in L (i.e. S has no components of
the second type), then ϕS([so]) is a nonzero multiple of so′ .

Corollary 4.3.37 (Corollary 4.2 of [Ras10]). If S is a connected cobordism between knots, then ϕS is an
isomorphism.

This corollary is particularly important because we can then study the filtration degree of ϕS to understand
the behavior of s.

Proof of Lemma 4.3.33. To set up, first isotope S so that you may select regular values 0 < t1 < t2 < . . . <
tk = 1 such that, between any ti and ti+1, there is at most one critical value of S, and there are no critical
values between 0 and t1. This hopefully feels like a familiar procedure by now!

Let Li = S ∩ R3 × {ti}, and let Si be the cobordism S ∩ [0, ti], a cobordism L→ Li.
The proof basically proceeds by induction on the heights of elementary cobordisms. The cobordism S1 is

a planar isotopy; this is the base case, and the proposition holds because ϕS1 = id.
Assume the proposition holds for Si. Then Se := Si+1 − Si consists of a single elementary cobordism

(union identity everywhere else, of course). The induction step holds if Se is a Reidemeister move, so we
only need to consider the cases of the four possible Morse moves; see Notation 4.3.8. We will abuse notation
a bit below and let ϕSe

also denote the chain map in Kom(ggVectQ), rather than just the map on homology.
These are individually not hard to prove; you should actually think through these yourself.

(0) If Se is a 0-handle attachment (birth), then ϕSe(s(oI)) = s(oI)⊗ 1
2a⊗ b. (This is a disjoint union,

so the differentials and homology respect the tensor product decomposition.) Done!

add pic

(1) If Se is a 1-handle attachment (i.e. a merge or a split), once again you can check by inspection that
the induction step holds. Verify it! Here you actually need to think about orientations in the plane.

add pic

(2) If Se is a 2-handle attachment (death), then there’s only one possible compatible orientation for
Li+1; since ε

′(a) = ε′(b) = 1, you basically just erase the component that died. But we need to
check that only one permissible orientation on Si (and thus on Li) extends to this unique orientation
on Li+1. Here, argue why if two different permissible orientations on Si extended to the orientation
on Li+1, then S overall would have a closed component.

□

Exercise 4.3.38. Fill in the details in the proof of Lemma 4.3.33 for the four Morse moves, by supplying
pictures working out the possible cases and explaining why the induction step holds in each case.

Remark 4.3.39. This is a very subtle comment. Feel free to ignore. Notice that while we are using the
Lee maps associated to cobordisms, nowhere did we actually use the fact that this assignment of cobordisms
to filtered chain maps actually defines a functor. In other words, Rasmussen’s invariant can be defined in
settings where you have something weaker than an actual functor; we only needed the fact that isotopic
cobordisms have the same Euler characteristic, and that Euler characteristics add when you glue cobordisms
along collections of circles.
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4.3.6. Profit! Now that we understand how Lee’s canonical generators behave under cobordisms, we reap
the benefits and prove a bunch of facts about the behavior of s under cobordisms embedded in 4D. Clever
mathmaticians (like you!) can then use these facts to do interesting topology.

Theorem 4.3.40 ([Ras10], Theorem 1).

|s(K)| ≤ 2g4(K).

Proof. Suppose K ⊂ S3 bounds a genus-g slice surface F ⊂ B4. Let S be the cobordism K → U obtained
by deleting a 0-handle from F and flipping it upside down. Then χ(S) = −2g. Let [x] be a homology class
where grq([x]) = smax(K), and further pick x ∈ [x] so that grq(x) = grq([x]) = smax(K). Note that none of
these classes or cycles are 0.

Since smax(U) = 1, we have
grq(ϕS(x)) ≤ 1.

Since ϕS is filtered of degree −2g, we have

grq(ϕS(x)) ≥ grq(x)− 2g

and so
s(K) + 1 = smax(K) = grq(x) ≤ grq(ϕS(x)) + 2g ≤ 1 + 2g

so we conclude that
s(K) ≤ 2g.

To get that s(K) ≥ −2g, we use the same argument but for K̄, which is cobordant to the unknot via
the surface S̄, and we similarly conclude that s(K̄) ≥ 2g. But s(K̄) = −s(K), so we multiply the whole
inequality by −1 to get s(K) ≤ −2g. The theorem follows. □

Exercise 4.3.41. Suppose knots K and K ′ differ by just one crossing change.

(a) Prove that |s(K)− s(K ′)| ≤ 1.
(b) From this, obtain a bound on the unknotting number u(K) of knot K, where u(K) is the minimal

number of self-intersections needed in a homotopy of K ↪→ S3 that changes K into an unknot.

Theorem 4.3.42. If D is a positive diagram for a positive knot K, then

s(K) = smin(K) + 1 = grq(so) + 1.

Proof. The oriented resolution Do is the unique resolution at the left-most vertex of the cube of resolutions.
There are no differentials into this homological grading, so so and sō are alone in their respective homology
classes. □

Exercise 4.3.43 ([Ras10], Corollary 1). (The Milnor Conjecture) Let gcd(p, q) = 1. For the braid-closure

diagram of the torus knot Tp,q = β̂ for β = (σ1σ2 · · ·σq
p−1, compute grq(so). Deduce the Milnor Conjecture:

g4(Tp,q) = g3(Tp,q) =
(p− 1)(q − 1)

2
.

Remark 4.3.44. Rasmussen also shows that the s invariant is not so useful for alternating knots, as it gives
the same bound as the classical knot signature. Manolescu–Ozsváth later proved that, in fact, Khovanov
homology is not very interesting for a larger class of recursively defined knots called quasialternating knots
[MO08]. We probably won’t cover this; good idea for a final project.

4.4. Non-isotopic (smooth) surfaces in the 4-ball; exotic disks. Here we give some more examples
where Khovanov homology was used to study surfaces embedded in 4D.

Recall that an (n+1)-dimensional TQFT will give an invariant of (n+1)-dimensional closed manifolds: a
cobordism F : ∅→ ∅ yields map Z(F ) : R→ R, which is determined by Z(F )(1) ∈ R. Rasmussen [Ras05]
and Tanaka [Tan06] showed that this invariant for (vanilla) Khovanov homology is always just determined
by the genus of the surface F .

However, if we instead consider a relative version of such an invariant, we do get a rich invariant; this is
possible because the target of the map Kh(K), is big.

Definition 4.4.1. Let F be a slice surface for a knot K. The Khovanov-Jacobsson class of F is

Kh(F )(1) ∈ Kh(K).
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Example 4.4.2. Sundberg–Swann [SS22] showed that the slice knot K = 946 has a pair of non-isotopic slice
disks D,D′ by showing that their Khovanov-Jacobsson classes are unequal:

Kh(D)(1) ̸= Kh(D′)(1).

Here are the disks:

(Image taken from their paper.) For the pink disk, surgery the knot at the pink arc; you will find the result
unravels to a two-component unlink. Fill these in and run your movie backwards. Do the same for the
orange disk.

Remark 4.4.3. Sundberg–Swann’s paper is much more general; they show that for any pretzel knot K =
P (p,−p, p), you can use the same trick to get two different slice disks. Furthermore, they show that you get
the same result if you take arbitrary connected sums of such K.

When a topologist sees this kind of result, they will naturally wonder, “Is this because the disks were
topologically non-isotopic in the first place, or are these disks actually an exotic pair?” And a certain type
of topologist will get very excited if the latter is true.

Let’s casually explain the difference. (All embeddings are proper.)
Let F be a surface homeomorphically embedded in B4, without any further regularity conditions. The

embedding is locally flat if, in any neighborhood of any point on F ⊂ B4, we can choose coordinates so that
F looks flat, in a smooth sense.

For example, using the Jordan curve theorem, you can convince yourself that any embedding S1 ↪→ R2 is
locally flat. However, as we saw on the first day of class, this is no longer true for S1 ↪→ R3:

or S2 ↪→ R3:

(Image taken from wolfram.com’s article.)

Definition 4.4.4. Let F and F ′ be two smoothly embedded surfaces in B4 that share the same boundary
in S3 = ∂B4.
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• We say F and F ′ are topologically (locally flatly) isotopic if there is an ambient isotopy taking (B4, F )
to (B4, F ′) through locally flat(ly embedded) surfaces, rel boundary.

• If F and F ′ are topologically isotopic but not smoothly isotopic, then we say that they are an exotic
pair (or just exotic, for short).

Remark 4.4.5. Sometimes I cook food from my ancestral culture and it’s referred to as ‘exotic’. I like to
think that the people who say this really mean to say that my dish and their dish are an ‘exotic pair’. After
all, being ‘exotic’ is a symmetric relation.

One particularly famous question about exotic phenomena in dimension 4 is THE:

Conjecture 4.4.6 (Smooth Poincaré Conjecture in dimension 4 (SPC4)). (Open) If X is homeomorphic to
S4, then X is diffeomorphic to S4.

As a smooth invariant, Khovanov homology can help with questions of this type. We will see some results
about disks here, and then later about 4-manifolds when we talk about skein lasagna modules.

Here is an example, again only a specific one taken from a larger class described in the paper:

Example 4.4.7. Hayden–Sundberg showed that the following knot J bounds slice disks D and D′ that are
topologically isotopic (by work of Akbulut) but not smoothly isotopic, by using Khovanov homology.

(Image taken from their paper.) They view the two disks upside-down, and study the maps Kh(D) and
Kh(D′) by identifying what happens to a class called Plamenevskaya’s class ϕ ∈ Kh(J) under these maps.
For one of these disks, Kh(D)(ϕ) = 0 but for the other, Kh(D′)(ϕ) ̸= 0.

Plamenevskaya’s class will show up again very very soon!
That excited topologist from before will probably then also ask, “Do these surfaces remain exotic after

stabilization? How many times do I need to stabilize before the surfaces become smoothly isotopic?”
In this case, stabilization refers to connect summing with a standard (small, boundary-parallel) torus

embedded in B4. In 4D topology, one expects that exoticness between two objects is eventually lost after
stabilizations, because, roughly speaking, there is more room for maneuvering. We’ll talk a little more about
this later on, but not about the details.

It turns out that if we work with a TQFT over a polynomial ring, such as F2[H], then Khovanov ho-
mology ‘sees’ stabilization (‘adding a handle’), e.g. as multiplication by 2X − H in the specific case of
A = F2[H,X]/(X2 = HX) (this theory is usually called Bar-Natan homology).

Example 4.4.8. Hayden [Hay23] gave an example (again, one of many) where (reduced) Bar-Natan homol-
ogy can show us two disks remain smoothly non-isotopic even after one stabilization. He first finds two disks
slice disks for a knot K that are not topologically isotopic, and therefore also not smoothly isotopic. Then,
he computes that

H ·
(
B̃N(D)(1)− B̃N(D′)(1)

)
̸= 0

and therefore

H · B̃N(D)(1) ̸= H · B̃N(D′)(1)

as classes in BN(K). Where did the 2X part of the handle 2X −H go? We’re over characteristic 2!

Remark 4.4.9. We did not talk about reduced homology, but will when we start talking about relationships
between Khovanov homology and Floer homologies. For now, just know that it’s a slimmer version of full
Khovanov homology, so if it can tell you something, so can the full theory.
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5. Legendrian, transverse, and annular links

5.1. Knots in the standard contact R3 and S3. In this section, we give just enough exposition on the
standard contact structure on S3 as well as Legendrian and transverse knots in this setting to proceed with
our applications of Khovanov homology. See John Etnyre’s notes [Etn05] for a fairly standard introductory
reference on this material, and much more context.

5.1.1. Legendrian knots in (R3, ξstd). Roughly speaking, a contact structure on a 3-manifold is a 2-plane
field that is maximally non-integrable, i.e. not tangent to any surface on any neighborhood of any point on
the surface.

Definition 5.1.1. The standard contact structure on R3 is

ξstd = ker(dz − ydx).

Here α = dz − ydx is the standard contact 1-form on R3.

The contact planes are invariant under x and z translation (i.e. parallel transport) and look like this at
(the tangent spaces of the points on) the plane z = 0:

(Image from [Etn05], where he says the images are courtesy of S. Schönenberger.)
Along each line parallel to the y-axis, you can think of these planes as the tangent spaces to a belt that

is overall a half-twisted band, but whose ends are at infinity. Let’s call this an ‘infinite half-twisted band’.
In particular, the planes are nearly vertical (i.e. yz-planes) when |y| is large.

While embedded 2-manifolds can’t be tangent to ξstd at more than isolated points, embedded 1-manifolds
can. For example, notice that the x-axis is everywhere tangent to the contact planes.

Definition 5.1.2. A Legendrian knot (or link) Λ in (R3, ξstd) is a smoothly embedded knot (or link) that
is everywhere tangent to ξstd.

In other words, T∗L ⊂ ξstd|L, i.e. the tangent bundle of L is contained in the contact plane bundle over
L ⊂ R3.

Again, we will consider Legendrian knots only up to Legendrian isotopy, i.e. a smooth isotopy only through
Legendrian knots.

The x- and z-translation invariance of ξstd allows us to draw Legendrian knots very easily, by projecting
away the y-coordinate. The only thing we need to remember is that, if you see a crossing, the more negatively
sloped strand is closer to you.

A front projection of a Legendrian knot (or link) Λ ⊂ (R3, ξstd) is the (image of the) projection of Λ onto
the xz-plane. The viewer is at either ±∞ on the y-axis. It doesn’t matter which one, as long as we’re all at
the same place.

If you stare at the contact form again, you will notice that the front projection will satisfy these properties:

• There cannot be any vertical tangencies.
• Consequently, there will be left and right cusps:

https://etnyre.math.gatech.edu/preprints/papers/legsur.pdf
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• At any crossing, the more negatively sloped strand is in front (i.e. closer to the viewer):

There are of course Legendrian Reidemeister moves that relate front diagrams of the same Legendrian
knot. See Figure 8 of [Etn05].

Remark 5.1.3. Each Legendrian knot of course also represents a smooth knot. But because of the stricter
geometric conditions on the equivalence between Legendrian knots, the set of Legendrian knots is a refinement
of the set of smooth knots. For example, the Chekanov pair is a pair of Legendrian representatives of the
knot m(52) that are famously hard to tell apart, but were proven to be in fact non-Legendrian-isotopic
[Che02, Eli98]:

(K1 is a sleeping cat with a long torso but short neck. K2 is a sleeping cat with a short torso but a long
neck.)

5.1.2. Transverse knots in (R3, ξrot). We can also look at a less restrictive class of knots that are everywhere
transverse to the contact planes.

Definition 5.1.4. A transverse knot (or link) in (R3, ξstd) is a smoothly embedded knot (or link) T where
at any point p ∈ T , the tangent space is transverse to the contact planes. In other words, at all p ∈ T ,

TpT ⋔ (ξstd)p.

Since our contact structure is orientable (it’s defined globally by a single 1-form, and therefore we can
talk about the positive and negative sides of the contact planes), we will also require that our transverse
knots intersect the contact planes positively. This allows us to fix an orientation on transverse knots (and
links) without having to draw any orientation arrows. (Technically, these are positive transverse knots, and
we could also study the entirely analogous set of negative transverse knots.)

Remark 5.1.5. You can also describe front diagrams of transverse knots. The geometry will give you the
following constraints:

• no downward pointing vertical tangencies (but upward is ok):
• no downward pointing positive crossings:

There are also transverse Reidemeister moves for front diagrams; see Figure 14 of [Etn05].

Remark 5.1.6. Transversality is a generic condition, so transverse knots are a less fine refinement of the
set of smooth knots than Legendrian knots. In fact, by perturbing a Legendrian knot, you will land in a
well-defined transverse knot class.
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The front projection gives us a diagrammatic way to make sense of the statement

{transverse knots} ↔ {Legendrian knots}/ ∼

(which we will not discuss but that you can easily look up).

Two contact structures ξ1, ξ2 on the same 3-manifold M are contactomorphic if there is a diffeomorphism
that sends (M, ξ1)→ (M, ξ2). In order to study a different type of knot living in contact 3-space, we some-
times prefer to instead work with a more rotationally symmetric version of the standard contact structure,
by using cylindrical coordinates (r, θ, z) for R3 instead of the Cartesian (x, y, z).

Definition 5.1.7. The rotationally symmetric contact structure on R3 is

ξrot = ker(dz + r2dθ) (= ker(dz + xdy − ydx)).

The contact plane for ξrot are now z- and θ-translation invariant. The contact planes look like this:

(Image from [Etn05] again.) Take the infinite half-twisted band from before, and now lay them out radially
so that their flat planes are identified at the z-axis. Copy this to each z-coordinate. Take the tangent planes.

In particular, the contact planes are nearly vertical when |r| is large. This is particularly exciting because
this means that if you take a braid, wrap it around the z axis and close it up, and then push it radially far
enough away from the origin, the result is a transverse link!

The more surprising thing is that this characterizes all transverse links. In order to appreciate this fact,
we need to take a detour to talk about braid closures.

Remark 5.1.8. There are moves that relate braid closure representatives of T . This will be discussed in
the next section (the Transverse Markov Theorem).

5.1.3. Braid closures and annular links. Let β ∈ Bn be a braid on n strands. The braid closure of β, denoted

by β̂, is the link obtained by wrapping β around the z-axis and gluing the strands:

This is also referred to as taking the trace. Prove to yourself that indeed, this operation satisfies the trace
condition Tr(β1β2) = Tr(β2β1).)

A braid closure naturally lives in a thickened annulus A× I, which is diffeomorphic to the complement of
a neighborhood of the z-axis ∪{∞} in S3.

Remark 5.1.9. The thickened annulus is also diffeomorphic to the solid torus. Also, if you’re not too careful
about details about open and closed sets, you can also think of this ambient space as

R3 − {z-axis} = (R2 − {0})× R.
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In any case, the braid closure is properly embedded and compact, so any of these descriptions is valid. They
all appear in the literature. The important thing is that you can draw your diagrams on an annulus by
projecting away the ‘thickening’ direction.

Theorem 5.1.10. Here are some classical theorems about knots in S3.
Alexander’s theorem (proved by Alexander) showed that every knot or link in S3 can be braided with

respect to the z-axis. The Yamada-Vogel algorithm (discovered by Vogel building on work of Yamada) gives
a hands-on way to turn a link diagram into a braided diagram (through valid isotopies, of course).

The Markov theorem (originally proven by Markov, but now there are many, many proofs) states that,
for any two braids β1 ∈ Bn1 and β2 ∈ Bn2 whose closures represent a link L, β1 and β2 are related by a
finite sequence of the following moves:

• (Markov I) conjugation, i.e. replacing β ∈ Bn with ωβω−1 where ω is any braid in Bn:

• (Markov II) positive or negative stabilization / destabilization, i.e. Reidemeister 1 of either type
across the braid axis):

These are meant to be construed in addition to braid isotopy in the annulus (i.e. braid-like Reidemeister 2
and 3, i.e. braid relations in the braid group).

Remark 5.1.11. Together, these two theorems allow us to study knots in terms of their braid represen-
tatives. This can be very useful. For example, at the moment, triply-graded Khovanov-Rozansky homology
(a.k.a. HOMFLYPT homology) can only be computed from a braided diagram of a link, even though it’s an
invariant for links in S3.

We have similar theorems for braid representatives of transverse links. Bennequin proved the analogue to
Alexander’s theorem:

Theorem 5.1.12 ([Ben83a]). (Bennequin’s theorem) For any transverse knot in (R3, ξrot), there exists a
representative that is braided with respect to the z-axis.

Braids are also naturally oriented; a (positive) transverse link will be oriented counterclockwise.
Nancy Wrinkle proved the following in her PhD thesis (!):

Theorem 5.1.13 ([Wri02], [OS03]). (Transverse Markov theorem) Any two braid representatives of a trans-
verse link are related by conjugation and positive Markov stabilization / destabilization.

These theorems allow us to study transverse knots via their braid representatives.
Finally, note that you can also have other non-braided links living in the solid annulus; braid (conjugacy

classes) are just a special type of annular link.
An annular link L is a link L ⊂ A × I. These links can be projected onto the annulus; these are called

annular diagrams. We usually draw them on the plane and put a marking where the axis is. In other words,
an annular link is really just the data of a link L and an unknotted axis U inside S3. We will talk more
about annular links later.
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5.1.4. Summary. Let’s summarize the relationships among the different types of links in R3 that we’ve
introduced.

We have the following surjections of sets.

(1) Thinking about the front projection and (R3, ξstd), we have

Legendrian links ↠ transverse links ↠ smooth links

(2) Thinking about braids and (R3, ξrot), we have

braids ↠ braid conjugacy classes ↠ transverse links ↠ smooth links.

(3) Finally, we obviously have
annular links ↠ smooth links

by just forgetting the unknotted axis.

5.2. Plamenevskaya’s transverse knot invariant. The reference for this section is [Pla06]

Definition 5.2.1. Let β ∈ Bn be a braid representative for T = β̂.

• Plamenevskaya’s cycle, which we will denote by v⃗−, is the chain in Kh(β̂) at the oriented resolution
where all circles are labeled v−.

• Plamenevskaya’s invariant, denoted by ψ, is the homology class in Kh(T ) of v⃗−.

Once again, this is a theorem-definition. We need to convince ourselves of the following facts:

(1) v⃗− is indeed a cycle. In a previous exercise, you proved that there are no split maps out of an
oriented resolution. Observe that any merge map out of Do sends v⃗− 7→ 0.

(2) ψ is invariant under the transverse Markov moves, so that it is actually an invariant of

Moreover, we also natrually want to know the answers to the following questions:

(1) Is ψ actually a transverse knot invariant, or is it just a smooth knot invariant? In other words, are
there smoothly isotopic transverse knots T ̸= T ′ such that ψ(T ) ̸= ψ(T ′)? Note that ‘1’ is a knot
invariant, but it’s not very useful.

(2) How does ψ behave under cobordisms? Is it functorial, i.e. if F : T → T ′ is a cobordism, is
Kh(F )(ψ(T )) = ψ(T ′)? You can restrict to symplectic cobordisms F , but since Khovanov homology
is a smooth invariant, Kh(F ) only takes into account the underlying smooth cobordism.

(3) Is ψ effective? In other words, can ψ distinguish pairs of transverse knots that existing invariants
can’t?

The first question is easy to answer, after we have the following proposition.

Proposition 5.2.2. If T is a negative stabilization of some T ′, then ψ(T ) = 0.

Thuss it suffices to find β̂ such that ψ(β̂) ̸= 0, since the negative stabilization of β̂ represents the same
smooth knot type.

Example 5.2.3. Let 1n denote the identity braid in the braid group Bn. The transverse (fillable, max tb)

unknot satisfies ψ(1̂1) ̸= 0 but its stabilization ψ(σ̂−1
1 ) = 0.

To answer the last question, we need to know what the classical transverse invariants are.

Definition 5.2.4. Let T be a transverse knot.

• Let β ∈ Bb be a braid representative for T . The self-linking number of T is

sl(T ) = sl(β̂) = −b+wr(β̂).

In terms of a front diagram D for T , the self-linking number is just wr(D). There is a more geometric
definition of self-linking, by thinking of T as a framed knot.

You can quickly check for yourself that self-linking is preserved by the transverse Markov moves.
• The smooth knot type of T is simply the equivalence class of the underlying smooth knot.

A transverse invariant is called effective if it can distinguish transverse knots better than these classical
knots can.

In other words, in practice we just need the invariant to tell us more than just the number sl(T ).

Proposition 5.2.5. The quantum grading of the class ψ(T ) is the self-linking number of T .
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Exercise 5.2.6. Prove Propositions 5.2.2 and 5.2.5.

Question 5.2.7. (Open) Is Plamenevskaya’s invariant effective?

In fact, there have been many refinements of Plamenevskaya’s invariant defined throughout the years (e.g.
[LNS15]). It is not known if these are effective either!

5.3. Annular Khovanov homology. Annular Khovanov homology is the a version of Khovanov homology
for links in the thickened annulus. We will first give a definition for AKh as a tri-graded homology theory,
analogously to how we defined Khovanov homology. Then, in §5.3.2, we give a more nuanced interpretation
of AKh as it relates to Kh.

5.3.1. Annular Khovanov homology. Let L ⊂ A × I be a link in the thickened annulus, and let D be a
diagram for L drawn on the annulus A. Instead of drawing the annulus, we typically mark the position of
the deleted z-axis with an asterisk or other marking.

The annular Khovanov chain complex CAKh(D) is generated by the same distinguished generators as for
Khovanov homology, but we now distinguish between homologically trivial and nontrivial circles. We assign
them triply graded modules, graded by grh, grq, and a new winding number grading, which we interpret
below in Remark 5.3.2.

• A circle Z is trivial if the marked point ∗ and ∞ are in the same region of R2\Z. To these circles,
we associate the tri-graded module

W := Z⟨w+, w−⟩

where

(grh, grq, grk)(w±) = (0,±1, 0).

• A circle Z is non-trivial or essential if the marked point ∗ and ∞ are in different regions of R2\Z.
To these circles, we associate the tri-graded module

V := Z⟨v+, v−⟩

where

(grh, grq, grk)(v±) = (0,±1,±1).

The tri-grading for the Khovanov generators is then defined by extension to tensor products, and allowing
for homological and quantum shifts.

The annular Khovanov differential dAKh is comprised of all the components of the Khovanov differential
that preserve grk grading. One can work out all six possible interactions between trivial and essential circles
to determine the tri-grading-preserving differential.

Instead of re-drawing these, here’s stuff grad-school me TeXed up [Zha18]. The ‘type’ names are not used
in the literature; I just needed them for a proof later in the paper.
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The homology of (CAKh(D), dAKh) is an invariant of the smooth isotopy type of the annular link.

Remark 5.3.1. One can also define the annular Bar-Natan category, typically denoted by BN(A) in the
literature. We will not dig into this in this course.

Remark 5.3.2. (1) Pick a generic arc from ∗ to∞. For a given oriented circle ζ in the plane missing the
marked point ∗, γ intersects ζ transversely (otherwise, perturb). The signed intersection (algebraic
intersection) I(γ, ζ) is 0 if ζ is homologically trivial in the annulus, and is ±1 if γ is essential. If
we associate counter-clockwise circles with the ‘plus’ labeling (and clockwise with ‘minus’), then
I(γ, ζ) = grk(ζ), (interpreted appropriately).

(2) Note that this association of counter-clockwise/clockwise with plus/minus is a matter of convention
and bookkeeping. This ‘orientation’ on ζ is not meant to be interpreted topologically in the context
of cobordisms and such!

(3) Grigsby–Licata–Wehrli show that AKh(L) has a sl2(C)-representation, where grk is the weight-space
grading. From this point of view W is two copies of the trivial representation, and V is one copy of
the defining representation.

So, if you’re working with C coefficients, it’s also fair to call grk the weight-space grading. I have
in the past, quite unfortunately, also used this terminology even while working over F2 before really
absorbing the ‘winding number grading’ terminology, which is more intuitive.

5.3.2. Summary for AKh. Given the data of a link diagram D in R2 and a basepoint ∗ in the complement
of D in R2, the winding number grading grk defines a filtration on the Khovanov chain complex (CKh, dKh).
Thus (CKh is grh and grq graded, and grk filtered.

The annular Khovanov homology of the annular link represented by (D, ∗) is the homology of the asso-
ciated graded object to the grk-induced filtration on CKh. The Khovanov differential decomposes into two
homogeneous-degree components:

dKh = d(1,0,0) + d(1,0,−2)

Definition 5.3.3. Let F• be a Z-filtration on a chain complex (C, d), with Fi ⊇ Fi+1. The situation with
inclusion the other way is basically identical. The associated graded object is the chain complex

(
⊕

Fi/Fi+1, d̄)

where d̄ is the induced differential on the quotients. If C is generated by distinguished generators that are
homogeneous with respect to a filtration grading, then d̄ is comprised precisely of the components of the
differential between generators with the same filtration grading.

So, for an annular link L ⊂ A× I, the annular Khovanov homology AKh(L) is a triply-graded invariant
of annular links.

Exercise 5.3.4. (a) Compute the annular Khovanov differentials for all six merge/split interactions
between pairs of circles. Confirm that dKh only either preserves grk or decreases it by 2.

(b) Since grk is defined on the level of Khovanov generators, this also gives a filtration on the Lee
differential. Identify all the (grh, grq, grk) homogeneous-degree components of the Lee differential.

Remark 5.3.5. Grigsby–Licata–Wehrli defined an annular version of Rasmussen’s invariant by studying the
annular Khovanov-Lee complex, which is grh graded and (grq, grk)-bifiltered. By taking a linear combinations
of grq (denoted by grj in their paper) and grk, they obtain a 1-parameter family {dt} of annular concordance
invariants [GLW17]. This type of construction (mixing two filtration gradings) was popularized by Ozsváth–
Stipsicz–Szabó’s Υ invariant from knot Floer homology.

Here is a cartoon:
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The blue lines are level sets in the grt = grq−tgrk filtration grading. For any t ∈ [0, 2], grt is a valid filtration
grading on the annular-Khovanov-Lee complex.

Grigsby–Licata–Wehrli then apply these dt invariants to measure some contact topological quantities,
such as right-veeringness of the mapping class group element for the b-pointed disk given by a braid β.

Remark 5.3.6. We probably won’t say much more about the mapping class group interpretation of braids in
this course, but for those of you interested, here’s an intuitive definition of the property of ‘right-veeringness’.

The braid group Bn can be thought of as the mapping class group of a disk with n (indistinguishable)
marked points. A braid β ∈ Bn is then a dance of these n marked points around each other, ending with
the points returning to the original marked positions, but possibly permuted. This gives a sort of stirring
action on the particles around them.

Draw an oriented arc γ from basepoint on the boundary of the disk to one of the marked points, then
apply the stirring action by β. If the resulting arc γ′ veers right upon leaving the boundary, then β is
right-veering.

We can use mapping class groups to describe the construction of contact 3-manifolds by Giroux’s open-
book decompositions. Honda–Kazez–Matić [HKM07] showed that a contact structure (M, ξ) is tight if and
only if all its open books have right-veering monodromies.

5.3.3. Hubbard-Saltz’s braid conjugacy class invariant κ. As I mentioned previously but possibly only ver-
bally in class, Plamenevskaya’s cycle ψ̃ / class ψ gives us a homology class to measure, and thereby obtain
invariants from in different settings. This is analogous to how Lee’s canonical generators are measured to
obtain Rasmussen’s invariant.

As originally defined, ψ is inherently annular. Hubbard and Saltz use the grk from AKh to define a braid
conjugacy class invariant κ by measuring the filtration level of ψ [HS16]:

Definition 5.3.7 ([HS16], Definition 1). Let β ∈ Bn. Let ψ̃(β̂) ∈ CAKh(β̂) denote Plamenevskaya’s cycle in

the annular Khovanov complex for the closure of β. Let {Fi} denote the grk-induced filtration on CAKh(β̂).

• If ψ(β̂) ∈ im(dKh), let

κ(β) = n+min{i | [ψ(β̂)] = 0 ∈ H(Fi)}
In other words, if ψ dies in homology, κ measures the filtration level at which it dies.

• If ψ(β̂) ̸= 0 ∈ Kh(β̂), then let κ(β) =∞. If ψ never dies, then κ is infinite.

Remark 5.3.8. In [HS16, Theorem 2], Hubbard–Saltz show that κ sometimes increases by 2 under positive
(Markov) stabilization, and is therefore not a transverse invariant.

However, braid conjugacy class invariant can also be useful. For example, they use κ to show the following:

Theorem 5.3.9 ([HS16], Corollary 17). Let β ∈ Bn. If κ(β) ̸= 2 and κ(m(β) ̸= 2, then β = 1 ∈ Bn.

In short, satisfying both parts of the hypothesis tell us that the mapping class group element β is both
right-veering and left-veering, and by work of Baldwin-Grigsby [BG15], the only such braid is the identity
braid.

Remark 5.3.10. All of these ‘filtration level at which ...’ definitions can equivalently be made in terms of

spectral sequences. For example, κ gives a lower bound on the length of the spectral sequence AKh(β̂) ⇒
Kh(β̂).

Since many of you might not have worked with spectral sequences before, I will give an introduction to
this algebraic tool next Wednesday before we talk about these in class.
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Remark 5.3.11. Lipshitz, Ng, and Sarkar also give various filtered refinements of Plamenevskaya’s invariant
in [LNS15], which are more likely to be effective than ψ (because they are refinements). If you are interested,
this could be a good final project.

5.4. Ng’s Thurston-Bennequin bound for Legendrian knots. Recall that a knot Λ ⊂ (R3, ξstd) is
Legendrian if it is always tangent to the contact planes ξstd = ker(dz − ydx). We draw front diagrams to
describe Legendrian knots, where the more negatively sloped strand is in front, and the diagram has no
vertical tangents, only cusps.

We have talked about classical invariant for transverse knots: the topological (smooth) knot type, and
the self-linking number. We now discuss classical invariants for Legendrian knots, and how smooth topology
plus framing information can tell us about Legendrian representatives of knots K.

Remark 5.4.1. Everything we discuss in this section is for oriented links. For knots, the orientation turns
out not to matter. I will however write ‘knot’ everywhere for simplicity.

Definition 5.4.2. Let Λ be a Legendrian knot. We have the following classical invariants:

(0) Topological knot type, i.e. K = [Λ], the equivalence class of Λ under smooth isotopy
(1) Thurston-Bennequin number, which measures how much the contact planes twist as you follow the

knot. Given a front diagram F of Λ,

tb(Λ) = wr(F )− c(F )

where

c(F ) =
1

2
(#cusps).

A zigzag in the front projection represents the knot traveling like a spiral staircase. If you think of
this as the path of a car traveling up to down levels in a multi-story parking garage, c(F ) basically
measures how many times you drive around in circles (ignoring the z-coordinate).

(1) Rotation number, which measures (roughly speaking) how many spiral staircase floors you travel up
and down (counted with sign). Given a front diagram F for Λ,

rot(Λ) = #(down cusps− up cusps).

In my head, I think of this in terms of a kind of energy. Suppose you are running around a building
with a lot of spiral staircases. You gain energy by descending staircases but lose energy by climbing
staircases. In this Escher-esque world, you can travel the path of a knot and end up with more or
less energy than you started with! (Sounds freaky, but this is just... monodromy.)

Remark 5.4.3. Recall that for a transverse knot T , the self-linking number is just the writhe of a front
projection. So, if T is a transverse push-off of Λ, then

sl(T ) = tb(Λ) + c(F ).

Our motivating question today is the following:

Question 5.4.4. Given a smooth knot K, what is the maximal tb(Λ) for Legendrian representatives Λ of
K?

The maximal Thurston-Bennequin number achievable by a Legendrian representative of K is called the
“max tb” of K, and is denoted by tb(K).

Remark 5.4.5. (1) Given K, we can study the Legendrian geography and botany of K. If you plot
all Legendrian representatives of K on a lattice with coordinates (rot, tb), the support will be a
“mountain range” (see [EH01]). The tb is the height of the tallest mountain. Geography is the
study of the support, and botany is the study of the flora (i.e. Legendrian representatives) at each
particular lattice point.
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(2) The tallest mountain might not be unique. For example, the mountain range for positive torus knots
looks like this:

while the mountain range for negative torus knots looks like this:

(3) It is easy to descend the mountain, i.e. decrease tb, simply by negative and positive stabilization:

However, it is not always possible to climb the mountain.

Remark 5.4.6. (1) In the drawings above, the thicker strands in the ‘S’ and ‘Z’ are closer to you. The
‘view from above’ is a cartoon only. This would normally be called a Lagrangian projection, but
technically then one needs to be careful about the areas enclosed by curves in the projection. We
will not comment on this further in this course.

(2) Notice that the labels ‘positive’ and ‘negative’ for these Legendrian stabilizations have more to do
with whether the rotation number increases or decreases, respectively. From the point of view of
smooth topology, these are both negative R1 moves.

(3) On the other hand, the legal Legendrian R1 moves

(and the 180◦ rotation of the above) are smoothly positive R1 moves. This jives with the idea that,
for the transverse pushoff of this Legendrian, positive stabilizations preserve transverse link type, but
negative stabilization change the transverse link type (and therefore definitely also the Legendrian
link type).

I really ought to give citations for all this; I will need to spend some time finding the right references.
Nevertheless, you do not need these references for the remainder of this course.
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Bennequin [Ben83b] discovered the first bound on tb; we have since found stronger and stronger bounds.
Here’s a sampling:

Proposition 5.4.7. Let Λ be a Legendrian representative for K. Then tb(Λ) ≤ tb(K), which is in turn
bound by the following values:

(1) (Bennequin) [Ben83b] tb(K) ≤ 2g3(K) − 1 Impactful result – was used to prove that there are
contact structures on R3 that are homotopic but not contactomorphic to (R3, ξstd); do not ask me
for details. Maybe ask Orsola instead. :)

(2) (Slice-Bennequin bound) [LM98]

tb(K) ≤ 2g4(K)− 1

So the original Bennequin bound was probably only detecting the 3D shadow of the real bound,
which comes from 4D behavior! This makes sense because (R3, ξstd) is the boundary of the standard
symplectic 4-ball, which comes from the complex structure of the unit ball in C2.

(3) (s-Bennequin bound) [Pla06, Shu07]

tb(K) ≤ s(K)− 1

Here s(K) is Rasmussen’s invariant.
(4) (Ng’s Khovanov bound) [Ng05]

tb(K) ≤ min{δ | Khδ(K) ̸= 0}
where grδ = grh − grq. We will discuss the δ grading and prove this bound today.

Remark 5.4.8. Observe that (4) =⇒ (3) =⇒ (2) =⇒ (1). Such is the progress of humanity.

Exercise 5.4.9. Prove the s-Bennequin inequality.
Hint: First relate tb with sl. Then compare the quantum grading of Plamenevskaya’s cycle v⃗− in the

Khovanov complex with the quantum filtration of Lee’s canonical classes in the Lee homology.

Let’s state Ng’s ‘strong Khovanov bound’ again the way he phrased it:

Theorem 5.4.10 ([Ng05], Theorem 1). For any link K,

tb(K) ≤ min{k |
⊕

i−j=k

Khi,j(K) ̸= 0}.

Remark 5.4.11. For alternating knots, the Khovanov homology (over Q) is rather simple; it is supported
on two diagonals on the (grh, grq) lattice. This was first shown by Lee in [Lee05], and was extended to
quasi-alternating links by Manolescu and Ozsváth [MO08]. Consequently, the Khovanov homology of a
quasi-alternating knot is entirely determined by two ‘classical’ invariants, the knot signature and the Jones
polynomial. I was at a conference in Berkeley a few summers back where Vaughan Jones objected to his
polynomial being called ‘classical’.

Ng proves that his bound is sharp for alternating knots.

Remark 5.4.12. The δ grading here is significant because it is also the grading used by Seidel–Smith in
their symplectic Khovanov homology [SS06], Khsymp, which is a Lagrangian intersection Floer homology
interpretation of Khovanov homology that is isomorphic to (combinatorial, δ-graded) Khovanov homology
over fields of characteristic 0 [AS19].

This means that Ng’s bound can equivalently be viewed as a tb bound coming from symplectic Khovanov
homology!

In addition to working with δ-graded Khovanov homology, Ng also makes use of a ‘shifted’ version of
Khovanov homology, which depends on the diagram; you may think of this as a version of Khovanov homology
for framed links, i.e. links made out of ribbon (or pappardelle) rather than string (or spaghetti).

Observe that, for a distinguished generator g for CKh(D), the δ-grading is given by

grδ(g) = p(g) + wr(D).

Ng’s shifted Khovanov homology Khsh is related to regular (δ-graded) Khovanov homology by

(10) Kh∗(D) = Kh
∗−wr(D)
sh (D)

so that the grading for g in CKhsh is simply p(v).
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Remark 5.4.13. This terminology (‘shifted Kh’) is entirely local to this current section, and is not used in
the literature, as far as I’m aware. However, the homology theory absolutely does appear elsewhere in the
literature in various forms (and slightly different conventions...). Here’s how I think about Kh vs Khsh.

If we were to define a bracket for Kh so that we didn’t have to include global shifts at the end, we would
use the bracket relations

For the framed link invariant Khsh, the bracket relation would instead be

The remainder of this section will be dedicated to proving the following proposition, which will immediately
imply Theorem 5.4.10.

Proposition 5.4.14 ([Ng05], Proposition 5). Let D be a front diagram for a Legendrian knot Λ with smooth
knot type K. Then

Kh∗sh(D) = 0

for all ∗ < −c(D), and therefore Kh∗(D) = 0 for all ∗ < tb(D).

The ‘therefore’ part is clear after you remember that tb(D) = wr(D)− c(D).
We will need the following lemma, which should hopefully feel somewhat similar to Lemma 4.3.28. If you

want practice with long exact sequences coming from mapping cones, try proving this lemma!

Lemma 5.4.15 ([Ng05], Lemma 6). Let D be a front diagram, and let D0, D1 denote the (Legendrian) 0-
and 1- resolutions at a specific crossing:

There is a long exact sequence

Khsh(D0) Khsh(D1)

Khsh(D)

(−1)

where the (−1) indicates a shift in δ-grading.
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Because this triangle is exact, we immediately have the following corollary.

Corollary 5.4.16 ([Ng05], Lemma 7). If Khsh(D0) and Khsh(D1) are both supported only in δ gradings
≥ n, then so is Khsh(D).

As you can imagine, the proof of Proposition 5.4.14 will proceed by induction on the number of crossings
(since D0 and D1 both have one fewer crossing than D).

(Base case.) If D has no crossings, then D is an unlink (call it Un) of n components, for some n. Since
grδ(g) = p(g) for all generators in CKhsh(U

n), the complex (and homology) are supported on δ gradings
{−n, . . . , n}. The Legendrian representative consisting only of max-tb unknots

has c(D) = n for the diagram above (and is in fact the max-tb representative of Un). So, indeed, the
Khsh(U

n) is supported only in gradings ≥ c(D).
(Induction step.) Now assume that for all diagrams with fewer crossings than D, the claim holds.
For the sake of understanding Ng’s argument quickly, we are going to draw a concrete example to follow.

But note that the proof is completely general.

In D, pick a right-most crossing. There are two possible scenarios:

(1) The two strands emanating rightward out of the crossing meet at a cusp, or
(2) the two strands emanating rightward out of the crossing do not meet at a cusp, and in fact go to

two separate cusps.

We study the two cases separately. In our example, Case 1 appears first, and then after reducing to D0,
we need to use Case 2, when the diagram looks like this:

Case 1. Resolving the crossing in Case 1, we have



66 MELISSA ZHANG

By (smooth) R1 invariance, Kh(D) ∼= Kh(D0). Note that wr(D0) = wr(D)− 1. Combined, this tells us that
Kh∗sh(D) ∼= Kh∗−1

sh (D0).
On the other hand, c(D0) = c(D). By the induction hypothesis, Khsh(D0) is supported on δ-gradings

≥ c(D0) = c(D). Therefore Kh∗sh(D) ∼= Kh∗−1
sh (D0) must also be supported in these gradings as well.

Case 2. Resolving the crossing in Case 2, we have

By Lemma 5.4.15, it suffices to show that both D0 and D1 are supported in degrees ≥ c(D).

• Note that wr(D0) = wr(D)− 1, but c(D) = c(D0); by a similar argument as in Case 1, D0 satisfies
the induction hypothesis.

• While c(D1) is different from c(D), D1 is clearly isotopic to a diagram where you remove the stabi-
lization on the far right strand. We can then apply the same argument as before.

This concludes the proof of Proposition 5.4.14!

6. Spectral sequences, Kh’s relation to gauge / Floer theories

Spectral sequences are an algebraic tool in homological algebra that computes homology by taking suc-
cessively more accurate approximations.

In our text, the spectral sequence itself can be a useful object to study, e.g. as a knot invariant.
We will start out with the most general version of a spectral sequence that you will see in this course;

these come from filtered complexes. We’ll then discuss more specific settings, like spectral sequences coming
from bicomplexes.

6.1. Spectral sequences from filtered complexes. Let’s begin by recalling some basics of filtered com-
plexes in a different light, and in the process, set some notation (slightly different from before).

A chain complex (of, say, Z-modules), in its most general form, is just a pair (C, d) where C is a Z-module
and d is an endomorphism of C satisfying d2 = 0.

In the situations we’re usually most familiar with, there is a homological grading, and C =
⊕
Ci where

Ci are the homologically graded pieces.
A (Z-)filtration on the complex (C, d) is a sequence of subcomplexes {FjC}j∈Z such that

FjC ⊇ Fj+1C
and d(FjC) ⊆ FjC. (In other words, d preserves the filtration level.)

In our settings, we also require that there are levels m and M where FmC = C and FMC = ∅. This makes
our filtration finite-length.

The filtration could also be indexed such that FjC ⊆ Fj+1C. We will see examples of both.
In our setting (i.e. Khovanov homology), C is generated by a set of distinguished generators that are

homogeneous with respect to some filtration grading grf .
In this case, we can decompose the differential as

d = d0 + d1 + d2 + · · ·
where di is the component of the differential that is grf graded degree i. Because our filtrations are finite-
length, we know that eventually, for k large enough, dk = 0, so this is a finite sum.
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Remark 6.1.1. Notice that the associated graded chain complex can be written as just (C, d0) in this case.

Remark 6.1.2. Observe that since d2 = 0, we know that the graded pieces of the endomorphism d2 must
be 0, so we know

d20 = 0

d1d0 + d0d1 = 0

d2d0 + d0d2 + d21 = 0

. . .

and so on.

Definition 6.1.3. The filtration spectral sequence for the filtered complex (C, d) with filtration {FjC} is a
sequence of chain complexes, successively defined as follows:

• (E0, d(0)) = (C, d0); note that this is just the associated graded complex
• (E1, d(1)):

– E1 is the homology of E0

– d(1) is the graded degree 1 piece of the induced differential d̄, viewed as a map on homology;
this is the lowest graded piece of the induced map on homology

• (E2, d(2)) is obtained the same way: E2 is the homology of E1, and d(2) is the lowest degree graded
piece of the (now doubly induced map)¯̄d, which is in fact graded degree 2.

Remark 6.1.4. First of all, if this definition is hard to parse, don’t worry – we will see an example and it
will all be much clearer.

• The notation in the definition above isn’t really standard. For example, I added the parentheses
around the superscript to remind you that, in general, d(i) is not di. (It wouldn’t even make sense
since they’re maps on completely different algebraic objects.)

• The Ei are called the pages of the spectral sequence. Every time you turn the page, you are taking
a subquotient (i.e. homology).

• Subject to some boundedness conditions, these spectral sequences will collapse (or terminate) on a
finite page. This means that, eventually, for k ≥ N for some large N , Ek = EN , and all the d(k) = 0.
We say that the spectral sequence abuts to the homology on page EN , and we call this page the
“infinity page” E∞.

For instructional reasons, I will work over F2 today, so that we don’t have to complicate the discussion
with signs. Our main tool is Gaussian elimination (see Corollary 3.6.6), which works over F2 as follows:

If you wish to work over characteristic 0, then you have to add a sign to your zigzag differentials.

Example 6.1.5. Here is an illustrative example of an abstract filtered complex and the pages of the asso-
ciated spectral sequence.

• On the left are the pages of the spectral sequence; induced maps that are not to be considered on
the present page are grayed out.

• On the right is the actual computation one might do, where one keeps track of the longer induced
differentials while working through the calculations of the pages.
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Exercise 6.1.6. The Lee complex is grq-filtered, and the homology of the associated graded complex is
Khovanov homology. This gives a spectral sequence, known as the Rasmussen-Lee spectral sequence, or the
Khovanov-to-Lee spectral sequence. Compute the Khovanov–to–Bar-Natan spectral sequence over F2 for
the trefoil appearing in [BN02].

Recall from Warning 4.3.22 that Bar-Natan homology corresponds to the Frobenius algebra F2[X]/(X2−
X). The merge and split maps are shown below:

The solution to this exercise is available on the class website.

To see how the Kh-to-Lee spectral sequence can be used to bound some topological quantities, see [AD19]
and [CGL+21].

Example 6.1.7. Another filtration spectral sequence comes from the fact that AKh is the homology of the
associated graded complex for Kh with respect to the grk grading. This filtration grading satisfies Fk ⊆ Fk+1.
Since dKh = d0 + d−2 where d0 = dAKh, our spectral sequence first computes differentials that preserve grk,
then those that decrease grk by 2, then those induced differentials that decrease grk by 4, and so on.

In the following annular Hopf link example, we don’t have longer differentials, but you can see the difference
between AKh(D) and Kh(D) on the different pages of the spectral sequence nevertheless.
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6.2. Spectral sequences from bicomplexes. Roughly speaking, a bicomplex is a 2D complex with two
differentials, one given by vertical arrows, and one given by horizontal arrows, as shown in the cartoon below:

It is automatically bigraded by Z⊕ Z by the row number and the column number.
Here is a more formal definition with more details, now that you have some context.

Definition 6.2.1. A bigraded complex or bicomplex is the data of

• chain groups Ci,j for i, j ∈ Z
• two gradings grr and grc, where (grr, grc)(Ci,j) = (i, j)
• two commuting differentials dh and dv such that

– the (grr, grc) bidegree of dh is (0, 1) and
– the (grr, grc) bidegree of dv is (1, 0).

Remark 6.2.2. The total complex of the bicomplex is a flattening of the above data into a single (one-
dimensional) complex, with homological grading given by grr +grc (whose level sets are lines of slope −1 in
the cartoon).

However, since dh and dv commute, their sum is not a differential. So, we need to introduce a minus sign
to every other row of dh differentials in order to make each square anticommute:

Then, we get the total complex of the bicomplex, which is a flattening of the bicomplex into a 1-
dimensional, linear complex. If B denotes the bicomplex, we denote the total complex (or totalization)
by Tot(B).

We again work over F2 in this section, in order to keep things as simple as possible while we are learning a
new algebraic gadget. In this case, there is no difference between commuting and anticommuting differentials.

Suppose we have a bicomplex (C =
⊕
Ci,j , dh, dv) of F2 vector spaces. The total complex clearly has two

filtration gradings: grr and grc. We call these the row-wise and column-wise filtrations:
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There are therefore two associated filtration spectral sequences:

• The filtration spectral sequence for the row-wise filtration (for filtration grading grr) first computes
homology with respect to dh on page 0. On page 1, it proceeds to compute homology with respect
to the chain maps induced by dv. So, we denote this spectral sequence by hvE•.

• The filtration spectral sequence for the columnwise-wise filtration (for filtration grading grc) first
computes homology with respect to dv on page 0. On page 1, it proceeds to compute homology with
respect to the chain maps induced by dh. So, we denote this spectral sequence by vhE•.

Both spectral sequences ultimately compute the homology of the total complex, so they abut to isomorphic
vector spaces: hvE∞ ∼=vh E∞.

Remark 6.2.3. Beware, though, that because the total differential is filtered with respect to two different
filtration gradings in these spectral sequence computations, the gradings will be messed up. That is, the two
infinity pages might have support on different lattice points! So all you can really say is that the ungraded
homologies are isomorphic.

However, if you have some third unrelated grading gru (u for unrelated to the row and column gradings)
hanging around, then obviously the spectral sequences will not affect that grading. In that case, you really
have many spectral sequences, one for each value of gru, and they don’t talk to each other at all.

The longer differentials (i.e. differentials on pages ≥ 2 are induced by cancellation of differentials in the
previous pages. For example, the ‘length-2’ differentials on page 2 of the two spectral sequences travel like
this:
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The length-n differentials would similarly travel the path determined by zigzags caused by Gauss elimi-
nation.

Remark 6.2.4. I’m using the terms ‘Gauss elimination’ and ‘taking homology’ sort of interchangeably,
because we are working over a field. Allow me to explain:

Recall that ‘taking homology’ is essentially the process of finding the smallest chain homotopy repre-
sentative in a chain homotopy equivalence class; this is the one with zero differential, and we call it the
homology.

Gaussian elimination (a.k.a. cancellation) is an algorithm for finding this smallest chain homotopy repre-
sentative. Given a chain complex (C, d), we can Gaussian eliminate away components of the differential d,
in some order, until we end up at a complex with zero differential. Because we are working over a field, we
are able to cancel along any component of the differential, because every nonzero coefficient is a unit.

This process is equivalent to changing the basis for our chain groups so that our original chain complex
becomes a direct sum of the homology and a bunch of acyclic complexes, which we then discard.

As a demonstration of the power of these two spectral sequences hvE• and vhE• computing the total
homology, we will now discuss examples coming from equivariant homology. The goal is to obtain a spectral
sequence relating two interesting objects X and Y via the following strategy.

(1) Set up a bicomplex using the topological data relating X and Y .
(2) Arrange so that vhE1 is easy to compute, and describes X.
(3) Arrange so that hvE• is easy to compute, so that you know hvE∞, which describes Y .
(4) Assuming the bicomplex is sufficiently bounded, we know that vhE∞ must then also describe Y , and

we are done. (The vhE• spectral sequence therefore relates X and Y .)

6.2.1. Classical Smith inequality. Let p be a prime. Let X be a topological space with a Z/pZ action
generated by σ : X → X (that is, σp = idX). Let Xfix denote the fixed-point set, which itself is also a
topological space.

The classical Smith13 inequality gives an inequality on the total dimensions of the singular homologies of
X and Xfix, over Fp:

dimH∗(X;Fp) ≥ dimH∗(X
fix;Fp).

Remark 6.2.5. Borel’s proof requires us to work over Fp; see [Bor60] for more details.

13P.A.Smith, back in the 1920s, extensively studied Z/pZ actions on topological spaces.



74 MELISSA ZHANG

We give Borel’s proof [Bor60] of the classical Smith inequality for p = 2, working over F2 (as required).
The proof for p ≥ 3 is similar. Also, Borel’s proof uses singular homology; we will instead demonstrate the
proof using CW-homology, which means it’s really only a proof for CW-complexes. Also, if you look at the
pictures, this is kind of a ‘proof’ by example; but you can piece together the real proof from the written text
if you wanted to. We basically follow the proof found on pages 5-6 of [LT16].

Our example to keep in mind is the following S2 with the reflection involution τ :

We’ve chosen a cell decomposition that plays well with this involution. The fixed point set is a copy of S1

with the cell structure shown on the right of the figure.
The Tate bicomplex is the bi-infinite bicomplex obtained by basically tensoring the complex (C∗(X), ∂)

with the localized polynomial ring Fp[θ, θ
−1], and then adding horizontal differentials 1 + τ :

The action of θ moves you to the next column over (to the right).
I’m abusing notation and letting τ denote both the topological involution as well as the involution on

chains. This is because I want to use τ∗ to denote the induced map on homology at some point.
The vhE• spectral sequence is very hard to compute, but it’s easy to compute up to page 1:

• (vhE0, d0) =

The homology is just H∗(X)⊗ F2[θ, θ
−1], which leads us to ...

• (vhE1, d1) =
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I could think hard about what (1 + τ)∗ does, but this page is already interesting – it describes X.
In any case, vhd2 looks pretty bad, so I’m going to stop computing this spectral sequence here.

The hvE• spectral sequence turns out to be easy to compute:

• (vhE0, d0) =

The kernel of d0 = 1 + τ consists of precisely two types of chains:
– cells that are literally fixed by τ (p, q, e, f), and
– orbits of cells that are not fixed by τ (A,B).

The second class are the image of 1 + τ . Therefore the homology of this page can be canonically
identified with C∗(X

fix).
• Now what is the are the induced differentials ∂∗? These are just the restriction of ∂ to the fixed
cells, of course – the gluing maps definitely haven’t changed! Let ∂fix denote the CW differentials
for C∗(X

fix).
So, (hvE1, d1) =

which is just (C∗(X
fix), ∂fix)⊗ F2[θ, θ

−1].
• Hence hvE2 ∼= H∗(X

fix)⊗ F2[θ, θ
−1]. We now need to reckon with the d2 differentials shown in gray

in the previous figure. These would have been induced by zigzags of the form
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For such a length-2 arrow to exist (i.e. have nonzero coefficient) on page 2, then both w and z needed
to have survived to page 2.

A subtlety here is that, technically speaking, we are thinking of w as a homology class in H∗(X
fix).

However, because we have been Gaussian eliminating this whole time, it’s also ok to think of w as
a generator (CW cell) that survived to page 2; to be more precise, a chain representative w̃ of w
survived to page 1. But we will abuse notation and just call this chain w, since Gaussian elimination
picks out a (noncanonical) representative / generator in a new basis.

Since w survived to page 2, we know that it’s (1) a fixed cell under τ and (2) in the kernel of ∂fix.
But then ∂w = 0 as well, so the first step of this zigzag is 0.

There are no more longer differentials!
• So the spectral sequence collapses, and we know that

hvE2 ∼= H∗(X
fix;F2)⊗ F2[θ, θ

−1].

Furthermore, this is also isomorphic to both hvE∞ and the homology of the total complex,H∗(Tot(C, ∂+
(1 + τ))).

Since vhE• also computes the homology of the total complex, we now know that this is a spectral sequence

H∗(X;F2)⊗ F[θ, θ−1] ⇒ H∗(X
fix;F2)⊗ F[θ, θ−1].

Now since every page turn of spectral sequence is a homology computation, the rank of the F2[θ, θ
−1]-module

on each page must be monotone decreasing.
After convincing ourselves that the rank of H∗(Y ;F2) ⊗ F[θ, θ−1] as an F[θ, θ−1]-module is the same as

the dimension of H∗(Y ;F2) over F2, we recover the classical Smith inequality.

6.2.2. Khovanov homology and periodic links. We now use the same technique to prove a similar Smith
inequality for the Khovanov homology of knots with a type of Z/2Z symmetry. The reference for this section
is [Zha18]; a more general reference is [SZ24a], but this uses techniques we have yet to discuss in this course.

Let p be a prime. Consider a link L̃ ⊂ S3 together with an orientation-preserving diffeomorphism
σ : S3 → S3 of order p that preserves L̃ set-wise.

The Smith conjecture (named after P.A.Smith, and now a theorem [Wal69], [MB84], tells us that the fixed
point set σ must either be (1) empty or (2) an unknotted fixed-point axis.

If σ has an unknotted axis and L̃ is disjoint from this axis, then we say that L̃ is a p-periodic link.
In 2010, Seidel and Smith14 proved the following Smith-like inequality for symplectic Khovanov homology:

Theorem 6.2.6 ([SS10]). Let L̃ be a 2-periodic link, and let L denote the quotient link. Then

dimKhsymp(L̃;F2) ≥ Khsymp(L;F2).

While Abouzaid–Smith proved that Khsymp agrees with δ-graded Kh over characteristic 0, we still don’t
know if there is an isomorphism over F2. So this result does not tell us if there’s a similar dimension inequality
for regular Kh.

Let’s see what happens when we use Borel’s technique. Our goal is to relate Kh(L̃) and Kh(L) (all over

F2), by hoping to see Kh(L) on some page of a spectral sequence built from CKh(L̃).

Here is the Khovanov-Tate complex for a two-periodic diagram D̃:

14a different, much younger Smith
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For concreteness, let’s consider a specific example. Let D̃ denote the following 2-periodic diagram for the
Hopf link, along with its cube of resolutions:

The red asterisk * marks the location of the unknotted axis of symmetry.
Also, we have used annular Khovanov notation (V and W) to keep track of the relationship between each

planar circle and the axis of rotation. For V circles, the quotient by τ is still a V circle. For W circles, each
pair (orbit under τ) maps to a single W circle in the quotient. Draw this for yourself to convince yourself.

The quotient diagram D is a diagram for the unknot, with one Reidmeister move across the axis of
symmetry.

Here is how τ acts on the distinguished generators:

Looking back at the Khovanov-Tate complex, consider the two spectral sequences, vhE• and hvE•.
First of all, note that vhE• ∼= Kh(L̃)⊗ F2[θ, θ

−1].
On the other hand, observe that vhE1 ∼= CKh(D)⊗F2[θ, θ

−1]. There are no fixed resolutions in odd cube
gradings, so d1 = 0. Therefore vhE2 ∼= CKh(D)⊗ F2[θ, θ

−1] as well.
The length-2 differentials are computed as zigzags of the form (1) map by dKh, (2) lift by 1 + τ , (3) map

by dKh. These are shown below:
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The dotted maps are 0 because the targets did not survive to page 2.
We now compare this with the CKh(D) complex:

Observe that there is a discrepancy! The dashed component does not correspond to an hvd2 differential,
whereas the other two do.

So what we actually have is the annular Khovanov differential, and you can check this in the following
exercise.

Exercise 6.2.7. (a) For each of the six possible Khovanov differentials, in the presence of the axis of
symmetry (V ⊗ V → W, V ⊗ W → V, etc.), compute the induced hvd2 differentials, and verify
that they correspond to the annular Khovanov differential, under the identification of generators
hvE2 ∼= CKh(D)⊗ F2[θ, θ

−1] discussed above.
(b) Verify the same is true if you build the annular Khovanov-Tate complex, i.e. use dAKh as the vertical

differentials in the bicomplex.

Using grading arguments, it’s possible to show that for the annular Khovanov-Tate complex, the hvE•

spectral sequence collapses at page 3, and obtain the following theorem:

Theorem 6.2.8 ([Zha18], Theorem 1). There is a spectral sequence

AKh(L̃;F2)⊗ F2[θ, θ
−1] ⇒ AKh(L;F2)⊗ F2[θ, θ

−1]

which implies the Smith-type inequality

dimAKh(L̃;F2) ≥ dimAKh(L;F2).

The actual theorem is more refined, and includes some grading information.
However, the same techique does not work for the Khovanov-Tate complex. In order to prove the cor-

responding theorem for Kh(L̃), and also to generalize this to all prime periodicities, we needed to use the
Lipshitz–Sarkar Khovanov stable homotopy type, which we will discuss later in the course.

6.3. Khovanov-to-Floer spectral sequences. While this is not a course about Floer homologies, the
relationship between categorified quantum invariants and Floer-type invariants should not be understated,
for at least two reasons. First of all, the group of people studying these two types of invariants often overlap;
these tools are often used in conjunction in low-dimensional topology, for example. Second, both ultimately
have a homological flavor, and algebraic tricks can often be emulated on either side.

Example 6.3.1. Recall that earlier in the course we mentioned the following wide-open problem:

Does the Jones polynomial detect the unknot?
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Kronheimer-Mrowka proved that Khovanov homology in fact does detect the unknot [KM11]. The proof has
two steps:

(1) Find a spectral sequence from Khovanov homology to instanton Floer homology
(2) Prove that instanton Floer homology detects the unknot.

Prove to yourself that this completes the proof!
The paper is of course very involved and very long. The two steps are very hard to prove!

Ozsváth–Szabó’s Heegaard Floer homology [OS04], and invariant of 3-manifolds, is most closely intertwined
with Khovanov homology; both were discovered around the same time and were studied and expanded upon
by the same cohort of grad students! (These grad students later became PhD advisors to my generation!)

In this section, we will focus on the first concrete connection between the two theories, a spectral sequence
discovered by Ozsváth–Szabó

(11) E2 ∼= K̃h(L̄) ⇒ E∞ ∼= ĤF(Σ2(S
3, L))

relating the reduced Khovanov homology of (the mirror of) a link L to the Heegaard Floer homology of the
branched double cover of S3 along L [OS05].

We will explain all the components of this statement at various levels of detail.
We first give a very, very, almost criminally elementary introduction to Heegaard Floer homology. See

[OS06], [Lip16], and [Hom21] for good introductory readings on Heegaard Floer homology.

6.3.1. Heegaard diagrams for closed, connected, orientable 3-manifolds. We will work with the most basic
flavor of Heegaard Floer homology and only concern ourselves with the simplest case of 3-manifolds.

Notation 6.3.2. This is how I draw a 2-sphere (left) vs a 3-ball (right):

Let Y be a closed, connected, orientable 3-manifold. Let f : Y → R be a self-indexing Morse function on
Y ; that is, the index i critical points are all in the critical level set f−1(i).

Observe the following:

• We can arrange so that there are unique index-0 and index-3 critical points.
• By Poincaré duality,

# index-1 critical points = # index-1 critical points.

• If there are g index-1 critical points, (and g index-2 critical points), then the level set f−1(3/2) is a
closed, connected, orientable surface with genus g.

In this context, the surface f−1(3/2) splits Y into two handlebodies. This decomposition is called a
Heegaard splitting for Y , and the surface f−1(3/2) is called the Heegaard surface for this splitting.
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A Heegaard diagram H for a Y is a combinatorial model for a Heegaard splitting, and consists of the
following data:

• a genus g surface Σg;
• a set of g red α-curves that each bound disks in the f−1([0, 3/2]) handlebody, and such that after
cutting along these disks, the result is a 3-ball;

• a set of g blue β-curves that each bound disks in the f−1([3/2, 3]) handlebody, and such that after
cutting along these disks, the result is a 3-ball.

Our running example will be this genus-2 Heegaard diagram for S3:

Given a Heegaard diagram H for Y , we know how to build Y :

(1) Start with a thickening of Σg.
(2) On inside, glue on thickened red disks, along the α curves.
(3) On the outside, glue on thickened blue disks, along the β curves.
(4) Fill in the remaining two ball-shaped holes on each side with two 3-balls.

Starting with a thickened version of Σ2, we can build the red handlebody by gluing in the disks on the
inside with the red curves as boundary:

Then, we can build the remainder of S3 by attaching the blue disks on the outside, whose boundaries are
the blue curves to get a ball, and then gluing to this B3 another B3:
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We can relate this construction (which started with the thickened Σ2 with the handle decomposition given
by our Morse function as follows:

.

Remark 6.3.3. This corresponds to a handle decomposition of Y with

• one 0-handle: the ball on the inside
• g 1-handles: thickened version of the part of the ascending manifold for each index-1 critical point,
in f−1([1, 32 ])

• g 2-handles: thickened version of the part of the descending manifold for each index-2 critical point,
in f−1([ 32 , 2])

• one 3-handle: the ball on the outside.

Example 6.3.4. Let’s now consider S1 × S2. This manifold is basically obtained by gluing two solid tori
S1 ×D2 together so that, for each θ ∈ S3, the disks {θ} ×D2 on the two solid tori are glued together along
their boundary to form a S2.

Here is a genus-1 Heegaard splitting for S1 × S2:

The red and blue curves bound disks on the inside and outside. If you slide the blue disk so that its
boundary is the same as the red curve, then you’ll clearly see an S2 with a red side and a blue side.

6.3.2. Heegaard Floer homology basics. Heegaard Floer homology was originally defined by Ozsváth and
Szabó, in [OS04]. There are many different version now, but today we will discuss only the most basic

version, the ‘hat’ flavor ĤF, for closed, connected, orientable 3-manifolds Y .
Here is a summary of the main steps:

(1) Start with a Heegaard diagram for Y . Pick a basepoint z and perturb the α and β curves so that
the diagram is admissible (see Remark 6.3.6).
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(2) Build a symplectic manifold from Σg, as well as two Lagrangian submanifolds Tα and Tβ from the
data of the α- and β-curves, respectively.

(3) The chain complex is generated as an F2 vector space by the points Tα ∩ Tβ .
(4) The differential counts moduli spaces of holomorphic disks with boundary on Tα ∪ Tβ , that do not

intersect the divisor defined by z ∈ Σg.

For a genus g surface Σg, Sym
g(Σg) is defined as the quotient of the g-fold Cartesian product of copies of

Σg by the obvious action of the symmetric group Sg:

Symg(Σg) = Σg × · · · × Σg/Sg.

Observe that the points in Symg(Σg) are basically unordered g-tuples of points in Σg.
Now Σg has a complex structure, so Σ×g

g does as well. What’s surprising is that, while Symg(Σg) is a
priori only an orbifold (the action of Sg is obviously not free), it’s in fact smooth, and moreover has an
induced complex structure! This makes Symg(Σg) into a symplectic manifold as well, with symplectic form
induced by the complex structure.

Inside Symg(Σg) are two totally real tori

Tα = α1 × · · · × αg/ ∼
Tβ = β1 × · · · × βg/ ∼

which are Lagrangian with respect to the symplectic structure.
Heegaard Floer homology is then the Lagrangian intersection Floer homology of (Symg(Σg),Tα,Tβ)...
... More concretely, here’s how you think about the generators and the differential.
The generators of the chain complex are the points Tα ∩Tβ . In other words, these are unordered g-tuples

of intersection points between α and β curves.
The coefficient of the differential from one intersection point x to another y is determined by counting

the size of the moduli space of holomorphic disks from x to y of the following form:

Officially, here is the definition of the differential:

∂x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),µ(ϕ)=1,nz(ϕ)=0

#M(ϕ)y.

• π2(x, y) is the set of homotopy classes of Whitney disks from x to y as shown in the above drawing.
• M(ϕ) is the moduli space of holomorphic representatives of ϕ; these disks have an R action by

parametrization (complex automorphisms of the unit disk in C that preserve ±i)
• µ(ϕ) is the Maslov index of ϕ, the ‘expected dimension’ of the smooth, real manifoldM(ϕ); Lipshitz

gave more explicit formulas for µ(ϕ) in his cylindrical reformulation for Heegaard Floer homology.

• M(ϕ) =M(ϕ)/R is a finite set of points, assuming that µ(ϕ) = 1.

For our purposes, it is necessary for you to really understand only the following examples.

Example 6.3.5. Our first example is the genus-1 Heegaard diagram for S1 × S2 from Example 6.3.4, but
now perturbed so that we actually have intersection points between the α and β curves, and with a basepoint
slapped on the complement of the α and β curves:
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In this g = 1 example, we are lucky that Symg(Σg) = Σg, and the drawn α and β curves are literally
Lagrangian. What you see is what you get, so we can explicitly determine the chain complex.

There are two intersection points, x and y, as shown in the Heegaard diagram H drawn above. Therefore

ĈF(H) = F2x⊕ F2y.

We now compute the differential; recall that we are working over F2:

• ∂x = 0: There are two holomorphic disks from x to y; they are shaded in purple and yellow.
• ∂y = 0: There are no holomorphic disks from y to x (the disks from computing ∂x have the wrong

orientation!).

Therefore ĤF(S1 × S2) ∼= F2
2.

It turns out that ĤF(Y ) enjoys an action byH1(Y ;Z)/tor. For S1×S2, either generator θ ofH1(Y ;Z) ∼= Z
sends x 7→ y.

Remark 6.3.6. Admissibility of a Heegaard diagram ensures that we can actually build a chain complex,
and that the invariant is well-defined. The actual definition of admissibility is somewhat involved, as the
requirements really come from studying the spaces of holomorphic disks between generators.

Our original diagram for S1 × S2 is not admissible:

We needed to perturb the β curve so that, if we cut Σ1 along both α and β, we get only disks, aside from
the piece containing the basepoint.

Example 6.3.7. Let’s do another example: Y = (S1 × S2)#(S1 × S2). Here is a Heegaard diagram:

There are four generators: {x1, y1} × {x2, y2}.
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Consider first the space of disks from (x1, x2) to (y1, x2). There are two, given precisely by the product
of the disks from Example 6.3.5 from x1 to y1 and the constant disk at x2.

After working through all four differentials (and remembering that we’re working over F2, you should find
that ∂ = 0, and each of the four generators represent a distinct homology class.

The H1 action is likewise induced by the H1 action on the two ‘sides’ of the Heegaard diagram. Fix
generators θ1 and θ2 of the H1 of the left and right copies of S1 × S2, respectively. Then the H1(Y ) action
is given by

(x1, x2)

(y1, x2) (x1, y2)

(y1, y2)

θ1 θ2

θ2 θ1

This should start to remind you of Khovanov homology...

Heegaard Floer homology behaves very well under connected sum:

ĤF(Y#Y ′) ∼= ĤF(Y )⊗ ĤF(Y ′).

If H is a Heegaard diagram for Y , and H′ is a Heegaard diagram for Y ′, then the connected sum of H and
H′ in the regions containing the basepoints is a Heegaard diagram for Y#Y ′. You can now check that, at
least on the level of chain groups, it is perhaps believeable that

ĈF(H#H′) ∼= ĈF(H)⊗ ĈF(H′).

And finally, because the basepoint inH#H′ is in the connect-sum region, no holomorphic disks pass ‘between’
the two sides. More precisely, if x and x′ are tuples of intersection points for H and H′, respectively, then
(x,x′) (obtained by concatenating the tuples) is a tuple of intersection points for H#H′. Define another
tuple (y,y′) similarly. Then holomorphic disks from (x,x′) to (y,y′) are in bijection with

{hol. disks ϕ : x→ y} × {hol. disks ϕ′ : x′ → y′}
by taking the diagonal disk in ϕ× ϕ′.

Moreover, the action of H1(Y#Y ′;Z)/tor ∼= H1(Y ;Z)/tor ⊗ H1(Y
′;Z)/tor is induced by the actions of

H1(Y ;Z)/tor and H1(Y
′;Z)/tor on the tensor factors of ĤF(Y )⊗ ĤF(Y ′), respectively.

Example 6.3.8. We now know how to compute ĤF(#kS1 × S2). And we also understand how H1 acts.

6.3.3. Branched double covers. In Example 6.3.7, we saw an inkling of how Khovanov homology (for unlinks,

at least) might be related to ĤF (for connected sums of S1 × S2, at least).
We now explain the topological relationship between planar circles and connected sums of S1 × S2, by

discussing branched double covers.
Let M be a manifold, and let L ⊂M be a submanifold. The k-fold branched cover of M along branching

locus L is a manifold Σk(M) with a (continuous) map π : Σk(M)→M such that

• for each point p ∈M\L, π−1(p) consists of k copies of p (a covering map), and
• for each point p ∈ L, π−1(p) is just one copy of p.

A prototypical example is the branched covering map π : C → C given by z 7→ z2. In the following
example, we describe a homeomorphic version of this branched covering, and how to construct the 2-fold
branched cover, also known as the branched double cover.

The typical notation for the branched double cover ofM along L is Σ2(M,L). However, to avoid notation
collision with a genus-2 Heegaard surface, we will instead just write Σ to denote ‘branched double cover’.

Example 6.3.9. Let D be a disk, and let p be a point in the interior of the disk:
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We wish to build Σ(D, p).
We first make a branch cut (right side of above figure), and then take two copies of our snipped disk:

We now glue 1 → 2′ and 2 → 1′ so that the resulting surface F has two lifts of each point other than p
(including the points along the branch cut – notice that these were doubled already when we made the cut,
so it’s ok that we then glued them to their twins on the second copy). There is, however, only one lift of the
branch point p.

We can visualize gluing the two shown disks above to get one very floppy disk.
We can also think of F as the ramp in a parking garage where you can climb from the 1st to the 2nd

floor, but then when you keep climbing, you end up back at the 1st floor.

Example 6.3.10. Now consider a disk with two branch points, red and blue:

We again make some branch cuts, and make two copies of our snipped disk. (These cuts are just my choice,
you could also decide to make a cut that connects the red and blue. However, I find the drawn visualization
easier to explain.)

When we glue the two pieces together by 1→ 2′, 2→ 1′; 3→ 4′, 4→ 3′, we get an annulus:

So Σ(D, 2 interior points) ∼= A, an annulus.

Example 6.3.11. Now consider the branched double cover of two arcs inside a 3-ball. This is homeomorphic
to the thickening of the previous example by an interval I:
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We make the same branch cuts, but now thickened by I as well:

Following the previous example, we make two copies and glue them together. This shows that the branched
double over of a sphere with branch locus given by two properly embedded arcs is a solid torus:

Example 6.3.12. Now we are ready to find the branched double cover of a 2-component unlink inside S3:

The trick is to first cut S3 into two balls as shown:

Using the previous example, we have Σ(S3,# ⊔#) ∼=
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Noting that the red endpoints need to glue to the red endpoints, and similarly for the blue endpoints, we
reason that the result is

Σ(S3,# ⊔#) ∼= S1 × S2.

6.3.4. Reduced Khovanov homology. In Example 6.3.7, I hinted at the fact that ĤF((S1 × S2)#(S1 × S2))
looks similar to Kh(# ⊔ #) = V ⊗ V . In the previous section, we hinted that the relationship between
#kS1 × S2 and unlinks.

But notice that there is a discrepancy:

Kh(# ⊔#) ∼= ĤF((S1 × S2)#(S1 × S2))

but

Σ(# ⊔#) ∼= S1 × S2.

So, Kh(# ⊔#) ̸∼= ĤF(Σ(S3,# ⊔#))!
This is one motivation for defining and studying reduced Khovanov homology. This is a version of Khovanov

homology defined for based links, i.e. links with a chosen basepoint:

Definition 6.3.13. Let (D, ∗) be a based diagram for based link (L, p).
The reduced Khovanov complex for (D, ∗) is

C̃Kh(D, ∗) := (CKh(D)/im(ξ)) {−1}

where ξ is the chain map that merges a small circle labeled X into the arc containing the basepoint:
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In other words, the C̃Kh(D, ∗) complex is the quotient complex you get from CKh(D) by erasing all the
generators that label the based component by X; the label on the component in a complete resolution Du

containing the based point must be 1.

Example 6.3.14. Here is part of the chain complex for the based trefoil:

The highlighted region is part of the subcomplex im(ξ).

Exercise 6.3.15. (a) Determine the reduced Khovanov homology of the unlink with k components.
(b) Compute the reduced Khovanov homology of the trefoil. Feel free to work over F2. Remember to

incorporate the quantum shift in the definition!

Fact 6.3.16. For knots, the isomorphism class of K̃h does not depend on the location of the basepoint.

6.3.5. Dehn surgery. Dehn surgery is a method for building 3-manifolds. Here’s the general idea:

(1) Pick a knotK ⊂ S3 and a framing of the knot, i.e. a homologically nontrivial circle γ on the boundary
of a neighborhood of K (a longitude for a tubular neighborhood of K).

(2) Drill out the solid donut that is a neighborhood of K. Now, glue it back in but so that the γ bounds
a disk for the inside solid torus.

Lickorish [Lic62] and Wallace [Wal60] proved that any closed, connected, orientable 3-manifold can be
obtained in this way.

There are varying conventions in the literature, and we will stay agnostic about these conventions. Ev-
eryone agrees on the following two examples, though:
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In the Heegaard diagrams above, (Σ1, α, β) is a Heegaard diagram for S3. If we replace α with γ, then
(Σ1, γ, β) is the Heegaard diagram for the manifold we get after surgery.

The ∞-surgery of S3 along the unknot U is just S3, since γ is parallel to α.
The 0-surgery instead yields S1 × S2, because now, on the inside of the torus, γ is supposed to bound a

disk.

6.3.6. The Ozsváth–Szabó spectral sequence. We are now ready to describe, in very broad strokes, the
Ozsváth–Szabó spectral sequence (11).

Recall that we have already arranged so that for the k-component unlink Uk,

K̃h(Uk) ∼= ĤF(Σ(S3, Uk)).

over F2 coefficients.
In order to boost this relationship to links other than the unlink, we use the same cube-of-resolutions idea

from Khovanov homology: we essentially use an iterated mapping cone construction. The result will be a
spectral sequence rather than an immediate identification.

If we see a neighborhood of a crossing in L, we can associate the 0 and 1 resolutions as shown below, with
conventions reversed from Khovanov homology (hence the mirroring in (11)).

In the drawing below, imagine that L has the red crossing. Let L0 be the link with the red crossing
replaced with the blue arcs, and let L1 be the link with the red crossing replaced with the green arcs.

These have a cyclic relationship, because they can be viewed as the three pairs of opposite edges of a
tetrahedron.

We want to take the branched double cover of the ball along the red arcs first. To help with visualization,
we will first rotate the inscribed tetrahedron (by rotating the ball) so that we see the diagram on the left:
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We can then make a branch cut and isotop to get the solid cylinder in the middle, and note that once we
build the branched double cover, the red arc will be contained in the red disk shown on the right.

In other words, if we branch along the red arcs, the parallel arcs on the boundary of the ball will, together
with their double, bound a disk in the resulting solid torus.

A similar situation would occur if we took the branched double cover along blue or green, of course. On
the right, we’ve faintly highlighted the boundary-parallel copies of the blue and green curves.

After taking the branched double cover of the ball along the red arcs, we have the following solid torus,
where we now only draw the boundary-parallel copies of the original red, blue, and green arcs (actually, just
one copy):

We only need to keep track of one copy of, say, the red circle, because the other copy will be parallel.
Let’s study the Heegaard diagram on the right more carefully. In fact, let’s first isotop the green curve so

that its intersections with red and blue are clearer:

In the diagram above, we’ve labeled the red, blue, and green curve as α, β, and γ, and given them
orientations so that their pairwise algebraic intersection numbers satisfy the following equation:

(12) I(α, β) = I(β, γ) = I(γ, α) = −1.

A consequence of this cyclic relationship is that the three 3-manifolds (Σ(S3, L) = Σ(S3, L∞),Σ(S3, L0),Σ(S
3, L1))

form a triad ; Ozsváth–Szabó show that there is then a surgery exact triangle (i.e. long exact sequence) re-
lating their Heegaard Floer homologies:

ĤF(Σ(S3, L0)) ĤF(Σ(S3, L1))

ĤF(Σ(S3, L∞))

This reveals how we can use the mapping cone construction: to compute the bottom object, we can
‘replace’ it with the cone of the top row. This is mostly analogous to how the Khovanov bracket works; see
Remark 6.3.17.

Remark 6.3.17. Ozsváth–Szabó show that for a triad (Y, Y0, Y1),

ĈF(Y ) ≃ Cone

(
ĈF(Y0)

f̂−→ ĈF(Y1)

)
where f̂ is the appropriate surgery map, and ≃ means ‘quasi-isomorphic’, which is the same as ‘chain
homotopic’ over a field. Unlike in Khovanov homology, there will likely be a nontrivial homotopy that
realizes this homotopy equivalence.

Ozsváth–Szabó’s key proposition tells us that these surgery maps actually correspond to the (reduced)
Khovanov merge and split maps!

So, on E0 of spectral sequence, we see a cube with ĈF of various connected sums of S1 × S2 at the
vertices. The differential d0 computes the Heegaard Floer homology for these very simple 3-manifolds; we
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can identify E1 with the K̃h cube, with unlinks at each vertex. One the next page, d1 corresponds to the

K̃h differential, by the key proposition alluded to in the previous paragraph. Therefore E2 ∼= K̃h(L̄).
We can view the remainder of the spectral sequence as a consequence of Remark 6.3.17. Due to the

nontrivial homotopy equivalences, we have to add homotopies of all cube-degree lengths to the components
of d1 in order to truly recover the Heegaard Floer chain complex:

So, the spectral sequence is really a filtration spectral sequence with respect to this cube degree.

7. Khovanov stable homotopy type

In this course, we first carefully went through a definition of Khovanov homology and how one works with
it. Then, we went on a tour of various applications of Khovanov homology. We now slow down (sort of)
once again, to study a topic relatively carefully. But don’t be fooled: our four-lecture journey through the
construction of a Khovanov stable homotopy type is meant only as a primer, to help you read the papers in
case you choose to dig deeper.

We began this course by defining the Jones polynomial, and introduced Khovanov homology as a higher-
level version of the invariant: while the Jones polynomial can only describe the knot embedded in S3, the
Khovanov invariant, as a TQFT, can also be used to describe cobordisms between knots.

In this section, we will see how Lipshitz–Sarkar further boost the Khovanov homology invariant to a
‘space-level’ invariant XKh. Roughly speaking, for a link L ⊂ S3, XKh(L) is a sufficiently high-dimensional
space whose singular cohomology agrees with Kh(L), after an appropriate shift in homological grading.

Just as the Khovanov invariant can be thought of as a chain homotopy equivalence class of chain complexes,
the Lipshitz–Sarkar invariant is really a stable homotopy type, rather than an actual particular space. (The
‘stable’ part refers to the fact that it is an invariant once you reach a sufficiently high dimension.)

We first begin with some motivation, starting with a brief introduction to / recollection of Morse theory.
A standard reference for Morse theory is [Mil63]; if you want a quick overview, I am willing to bet that there
are many, many video resources online covering Morse theory.

7.1. The idea of Morse homology.

Recall that we can build the torus S1 × S1 using one 0-handle, two 1-handles, and one 2-handle:
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As a CW-complex, we can also build it using one 0-cell, two 1-cells, and one 2-cell:

The CW chain complex Z→ Z⊕ Z→ Z is generated by the cells:

⟨F ⟩ → ⟨a, b⟩ → ⟨v⟩.
Based on the attaching maps shown in the drawing, we have

∂F = a+ b− a− b = 0

∂a = ∂b = v − v = 0

so ∂ = 0.
We will now describe a third way to compute the same homology, by looking at flow lines dictated by a

sufficiently generic height function, called a Morse function.
Lean T against a wall, and imagine dripping chocolate from the point at the top:
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At most points on the torus, chocolate flows. However, at the four critical points of the height function,
the chocolate ‘pools’. Two are shown above; the other two are in the back of the torus, and you can’t see
them because chocolate is opaque.

Here is a better picture; the two critical points on the back side of the torus are shown as x’s:

There are three types of critical points shown.

• At the green critical point, if you shift slightly away in any direction, the chocolate flows away. More
formally, we say that the descending manifold, a.k.a. unstable manifold, of the green critical point is
2-dimensional.

• At each of the red critical points, shifting in two different directions might yield two different results:
in one direction, the chocolate will flow back to the critical point; in another, the chocolate will
flow away from the critical points. We say these critical points have a 1-dimensional descending /
unstable manifold; they also have a 1-dimensional ascending / stable manifold.

• At the blue critical point at the bottom, any two directions you choose to shift in will yield chocolate
flowing back into the critical point. So this point has a 0-dimensional descending / unstable manifold,
and a 2-dimensional ascending / stable manifold.

The generators for the Morse homology complex are these critical points, and the homological grading of
a critical point is given by the dimension of its descending / unstable manifold. The homological grading of
a critical point is usually called the index of the critical point.

Remark 7.1.1. Beware: We will unfortunately also use the term ‘index’ later to describe a difference
between homological gradings, i.e. a homological degree.

A height function is said to be Morse-Smale if

• the critical points are isolated and
• the ascending and descending manifolds of different critical points intersect transversely.

In this case, the Morse chain complex is well-defined and yields the Morse homology. Here are some examples
of height functions on the torus that are not Morse-Smale:
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Our leaning-torus height function is Morse-Smale, so we can describe the differential. The Morse differ-
ential counts flows from index i critical points to index i − 1 critical points, with sign. This means that
the critical points, which are indeed points, actually have a framing. You could imagine them as tiny ball
creatures facing a particular direction, which is either + or −.

Let’s revisit the picture of the flow lines we saw before, but now with the generators labeled:

We see that out of F there are green and teal flow lines to index-1 critical points a and b, and they come
in pairs, with opposite signs. For example, the two teal flow lines from F to b clearly oppose each other while
entering b. There are ways to make all of this precise, of course! We unfortunately don’t have enough time
to stray off-course. Similarly, both a and b have pairs of oppositely-oriented flow lines into v. We conclude,
just as we did in our CW-homology calculation, that the differential is 0.

Observe that, after choosing our Morse-Smale height function, we only actually needed the data of the
1-skeleton to complete our computation. This should give you a sense of how much information is being lost
when we compute homology from a topological space.

For example, we could have also thought about all the flow lines from F to v. There are four 1-parameter
families of these flow lines, one of which is shaded in purple below:
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The moduli space of flow lines from a critical point ej of index j and a critical point ei of index i < j is a
spaceM(ej , ei) where each point represents a single flow line; the identification is continuous, so that flow
lines close to each other correspond to points in the moduli space that are close to each other. Here is where
we use the word ‘index’ again: these are flows of index j − i.

In our situation,M(F, v) is the disjoint union of four intervals. The boundaries of each interval represent
broken flow lines, e.g. the concatenation of a flow line from F to a with a flow line from a to v. (See the
right-most drawing in the future above.)

Remark 7.1.2. The actual proof that ∂2 = 0 in Morse homology essentially boils down to the fact that the
moduli spaces of index 2 (i.e. flows of index 2) are one manifolds, and we really understand 1-manifolds.

All this is to say that, when we compute Morse homology, we are really only concerning ourselves with
the data of moduli spaces of flows of index 1 (and you could maybe say 2, since we do want to check that
∂2 = 0).

7.2. The spatial refinement problem. Now suppose I start with a chain complex of free Z-modules (a
free resolution!), and I wish to build a space whose Morse homology (or CW, singular, etc. homology) agrees
with that of my chain complex.

The obvious way is to compute the homology, and then wedge together a bunch of spheres of the ap-
propriate homological dimension. This method guarantees that your space will be no more interesting than
your chain complex.

For example, had we start with the CW chain complex for the torus, we would have ended up with the
space S0 ∨ S1 ∨ S1 ∨ S2 (eww) which is definitely not our nice, smooth, beloved (not to mention connected)
torus S1 × S1.

Suppose we want to really build the space up with cells corresponding to the generators of the chain
complex. The generators would tell us how many points to start with, and the differentials would tell us how
to glue together the 1-skeleton. But at this point, we might still have 63 more dimensions to go — how do
we glue on the faces (corresponding to the moduli spaces of index 2 flow lines), or the 3-dimensional pieces?
What if we glued together our 2-skeleton so weirdly that it’s impossible to glue in a 3-ball where we want it?

This gluing information is what is lost when we take homology.

Remark 7.2.1. One should expect that this lost information is nontrivial. For example, in §6.2.2 we saw
(asserted) that if a CW complex has a Z/2Z action, then we can build the Tate bicomplex, and the hvE•

spectral sequence is guaranteed to collapse by page 3. Perhaps you could imagine that you could build an
abstract chain complex to place in the vertical columns of the Tate bicomplex, in such a way that the spectral
sequence does not collapse by page 3; then you’d know that the particular chain complex you chose could
not have come from a Z/2Z equivariant CW decomposition of a space!

While homology is just a graded Z-module, a space has a cohomology ring, whose multiplication is given
by the cup product. This means that two spaces can have the same homology, but different cohomology
rings.

Lipshitz–Sarkar’s Khovanov stable homotopy type is a great example of this phenomenon, though in the
category of suspension spectra rather than topological spaces. The analogous operation to cup product
operations a ⌣ a for suspension spectra are Steenrod squares Sqi. Seed showed by computing Steenrod
squares that XKh can distinguish between knots and Khovanov homology can’t [See12]!

So indeed, the space-level refinement of Khovanov homology is a stronger invariant than Khovanov ho-
mology.
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There are currently three methods for constructing XKh(L), which we outline briefly below. All three
were shown to be equivalent (in the appropriate sense) by Lawson–Lipshitz–Sarkar [LLS20].

(1) Morse flow category approach by Lipshitz–Sarkar.
This is the original method Lipshitz–Sarkar used to construct the spectrum. The main idea is

to use Cohen–Jones–Segal’s proposed idea [CJS95] for capturing the full data needed to rebuild a
space, by building a framed flow category that describes all the moduli spaces of flow lines, with
framings, i.e. full gluing instructions.

This is the most hands-on method, and we will study this one in detail.
(2) Burnside functor approach by Lawson–Lipshitz–Sarkar.

This method is still quite hands-on, in the sense that some powerful theorems allow you to work
with some very simple categories. The idea is to capture the information that a framed flow category
would, but in a more abstract way. We can view the Khovanov complex as a functor from category
2n → ModZ. We boost this to a functor to a version of the Burnside category B, by making some
careful choices. Using the Pontrjagin–Thom construction, this gives us a functor 2n → Top∗ to
based topological spaces. We then take the hocolim of this diagram of spaces, which gives us a (very
high dimensional) space. Finally, suspend and desuspend to get a suspension spectrum.

We might touch upon this construction if we have time.
(3) K-theory approach by Hu–Kriz–Kriz.

This method feels the least hands-on to me, and I am actively trying to learn enough homotopy
theory to be able to work with it. The basic idea is to build a permutative category which, again,
contains all the framing information that we need to be able to build a space, and then pass this
category through the Elmendorf–Mandell K-theory machine, which magically spits out a spectrum.

Finally, to bring us back down to earth, here is a warm-up question from class:

Warmup 7.2.2. In our torus example, we saw thatM(F, a) is two dots (there were two flow lines).

(a) What doesM(F, v) look like?
(b) There are no moduli spaces for higher index flows in our example, but what would you guess a

moduli space of index-3 flows would look like?

7.3. Cohen–Jones–Segal construction.

7.3.1. Examples to keep in mind. Let f1(x) = 3x2 − 2x3. This is a Morse function on R with one index 0
critical point and a one index 1 critical point:

The flows together form the 1-dimensional cube. The Morse homology complex is captured by the flows
of index 1 between the critical points.

Remark 7.3.1. The Morse function f1 : R → R for R is indeed Smale. The ascending manifold of e0 and
descending manifold of e1 are shown below:



NOTES ON KHOVANOV HOMOLOGY 97

Their codimensions in R are both 0. Their intersection, the red curve, also has codimension 0. Since
0 + 0 = 0, the intersection is transverse.

(For more on transversality, see [GP10], a standard textbook on differential topology.)

Now let f2(x1, x2) = f1(x1)+f1(x2); this is a Morse function for R2. Here is the contour (i.e. topographic)
map of the graph of this function:

The red flag is at the top of a hill, and the blue dot is at the bottom of a lake. These points are at (1, 1)
and (0, 0). The green dots, located at (0, 1) and (0, 1), are saddle points. A skier starting slightly away from
the red dot following the path of gradient descent to the lake has a 1-parameter family of possible paths,
depending on where they started:

The compactification of this moduli space of flows includes the flows where the skier skis from the red
point to a green point, pauses (for eternity) and then skis to the blue point.

We writeM(e2, e0) to represent the (compactified) moduli space of flows from e2 to e0, the pink interval.
Notice that the flows all together form a 2D cube.
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Now let f3(x1, x2, x3) = f1(x1)+f1(x2)+f1(x3). To visualize the graph of this function, imagine swimming
in a pool, where the water temperature varies based on location. There is a local maximum in temperature at
(1, 1, 1) and a local minimum in temperature at (0, 0, 0). At (1, 0, 0), traveling away along the x1 dimension
means you’ll feel colder; along the x2 and x3 dimensions, you’ll feel warmer.

The Morse flows form a 3D cube:

The moduli spaces of index 1 and 2 flows are dots and intervals, respectively. The moduli spaceM(e3, e0)
of flows from the unique maximum to the unique minimum is a hexagon, which you can see by taking a
cross-section of all the flows along the dotted line shown.

The boundary of this hexagon is stratified, i.e. decomposed into submanifolds of various dimensions. Here
is the most natural stratefication:

This is most natural because, if you wanted to build this hexagon out of gumdrops, dried spaghetti, and
cloth, you would build it this way.
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• The 6 vertices are codimension 2 strata. These correspond to twice broken flows.
• The 6 edges are codimension 1 strata. These correspond to once broken flows. These come in two

flavors:
– index 2 flow followed by index 1 flow, i.e. a composition

M(e1i , e
0)×M(e3, e1i )

◦−→ ∂M(e3, e0)

– index 1 flow followed by index 2 flow, i.e. a composition

M(e2i , e
0)×M(e3, e2i )

◦−→ ∂M(e3, e0)

The codimension 1 strata of the boundary are going to play a very important role in determining how the
rest of the boundary looks. We will think of the flavors of codimension 1 strata as colors of paint that we
will use to paint the boundary of a ⟨n⟩-manifold, which we define in the following section.

In general, the function

(13) fn(x1, . . . , xn) =

n∑
i=1

f1(xi)

is a Morse function for Rn.

• The flows between critical points glue together to form a cube of dimension n.
• The moduli spaces that appear are all permutohedra, which we will study more carefully soon.
• The codimension k strata correspond to k-times broken flows.

The reason why we are so focused on this particular family of Morse functions is because the Khovanov
chain complex lies over the n-dimensional cube, for a diagram with n crossings. Lipshitz–Sarkar’s Khovanov
flow category, which we will define in a few lectures, will be built by heavily relying on the cube flow category,
which is what we have been studying carefully.

7.3.2. ⟨n⟩-manifolds. The moduli spaces of Morse flows will be very special kinds of manifolds with bound-
aries of all possible codimension, and that have a certain kind of combinatorial rigidity.

Definition 7.3.2. A k-dimensional manifold with corners locally looks like a neighborhood of (R+)
k, where

R+ = [0,∞).

Remark 7.3.3. • In other words, it can have boundary points belonging to strata of any codimension
c where 1 ≤ c ≤ k.

• This loose definition is meant to be analogous to how you would explain what a manifold is to a
friend, without having to talk about charts and atlases.

• This teardrop-shaped disk is a 2-dimensional manifold with corners:

We will need a very precise definition of the term ‘face’.

Definition 7.3.4. Let X be a manifold with corners.

• A connected face is the closure of a connected component of the codimension-1 boundary of X.
For example, the 6 teal arcs in the stratified hexagon (??) are, individually, connected faces of

the hexagon.
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• A face of X is a possibly empty union of disjoint connected faces of X.
For example, the pink subspace below is a face of the hexagon, but purple subspace below is not

a face of the hexagon:

I have been asking you to vibe out the ‘obvious’ stratefication of the boundary of a manifold with corners.
To be more precise, we can describe the strata as the connected components of codimension i boundary,
with i ranging from 1 to k.

For each x in a manifold with corners X, let c(x) denote the codimension of the stratum that x lives in.
(If x is in the interior of X, let c(x) = 0.)

Definition 7.3.5. A k-dimensional manifold with faces is a k-dimensional manifold with corners such that,
for each x ∈ X, x belongs to exactly c(x) different connected faces of X.

Remark 7.3.6. (1) The teardrop example from before is not a manifold with corners because the vertex
v is adjacent to only one distinct edge, even though c(v) = 2.

(2) This triangle is a manifold with faces:

(3) Any face of a manifold with faces must necessarily also be a manifold with faces. explain why

Definition 7.3.7. A k-dimensional ⟨n⟩-manifold is a k-dimensional manifold with faces along with an
ordered n-tuple of faces of X where

• ∂X =
⋃

i ∂iX
• for i ̸= j, ∂iX ∩ ∂jX is a face of both ∂iX and ∂jX.

Remark 7.3.8. (1) We can think of each i ∈ {1, . . . , n} as a color of paint. We paint a face of X with
each color, so that by the time we’re done painting with color n, we have covered the entire boundary
of X with paint.

(2) A point x ∈ ∂X will be covered with c(x) different layers of paint, all of different colors, corresponding
to the codimension-1 faces that it abuts.

(3) For this reason, I verbally refer to ⟨n⟩-manifolds as ‘n-painted manifolds’.
(4) Notice that k and n are different and basically unrelated.
(5) The triangle previously shown is cannot possibly be a 2-dimensional ⟨2⟩-manifold, but it can be a
⟨3⟩-manifold:



NOTES ON KHOVANOV HOMOLOGY 101

Because the colors of the corners (boundary of codimension ≥ 2) are determined by the colors painted
on the codimension-1 boundary, it suffices to draw the figure below:

Example 7.3.9. (Permutohedra)
The permutohedron Pn+1 is the most important example of an n-dimensional ⟨n⟩-manifold, for our pur-

poses.

• As a space, Pn+1 is the convex hull in Rn+1 of the (n+ 1)! points

{(σ(1), . . . , σ(n+ 1)) | σ ∈ Sn+1}

where Sn+1 is the symmetric group on the letters [n+ 1] := {1, 2, . . . , n+ 1}.
• The connected faces of Pn+1 are in bijection with proper subsets ∅ ̸= S ⊊ [n+1]; for a proper subset
S of cardinality k, the corresponding face FS ⊂ ∂Pn+1 is the intersection of Pn+1 with the plane∑

i∈S

xi =
k(k + 1)

2
.

• The ⟨n⟩-manifold structure is given by

∂iPn+1 =
⋃

|S|=i

FS .

• Here is the hexagon P3 again 15:

Notice that the two ‘flavors’ of once-broken flows on the boundary ofM(e3, e0) exactly correspond
to the faces ∂1P3 and ∂2P3.

15Thanks to Josh Turner for spotting and fixing a previous error in this example!
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7.3.3. Flow categories. We are now ready to look at the definition of a flow category. If you keep in mind
the Morse flows picture, all of these conditions should feel quite natural.

Note that I am using different variables names from the source. Sorry.

Definition 7.3.10 ([LS14], Definition 3.13 ). A flow category is a category C consisting of the following
data:

• finitely many objects Ob(C )
• a Z-grading on objects gr : Ob(C )→ Z
• morphisms between objects Hom(x, y)

subject to the following conditions:

(1) Hom(x, x) = {idx} for all x ∈ Ob(C ). This is so that we have a category. Note thatM(x, x) = ∅.
(2) For distinct objects x ̸= y, Hom(x, y) is a compact (gr(x)−gr(y)−1)-dimensional ⟨gr(x)−gr(y)−1⟩-

manifold. This space is denoted byM(x, y).
(3) Let x, y, z ∈ Ob(C ) be distinct, with gr(x) ≥ gr(y) ≥ gr(z), with

gr(x)− gr(y) = ℓ

gr(y)− gr(z) = m

gr(x)− gr(z) = n = ℓ+m.

x

y

z

index ℓ

index n

index m

• The composition map

◦ : Hom(y, z)×Hom(x, y)→ Hom(x, z)

is an embedding into ∂mHom(x, z). Recall this is the face of Hom(x, z) painted with the color
m.
• For i < m, the preimage of ∂iHom(x, z) under the particular composition map we are looking
at here is

◦−1(∂iHom(x, z)) = ∂iHom(y, z)×Hom(x, y).

• For j > m, the preimage of ∂jHom(x, z) under the particular composition map we are looking
at here is

◦−1(∂iHom(x, z)) = Hom(y, z)× ∂j−mHom(x, y).

(4) If you run over all the y with grading in between that of x and z, you will be able to piece together
the whole ∂Hom(x, z) = ∂M(x, z):

∂mHom(x, z) ∼=
∐

y | gr(y)=gr(z)+m

Hom(y, z)×Hom(x, y).

Here ∼= means ‘diffeomorphism’.

Example 7.3.11. For a Morse function f : X → R, we get the Morse flow category for f , exactly the way
we have been motivating the definition of ‘flow category’.

7.3.4. Framing the flow categories. In this section we give a sense of what it means to upgrade a flow category
to a framed flow category.

A ‘framing’ typically refers to a continuous choice of orthogonal basis (a ‘frame’) for the fibers of a bundle.
When we talk about a framing for a knot K, for instance, we pick a choice of longitude λ for the solid torus
ν(K); this gives a continuous choice of orthogonal bases for the normal bundle of the knot in S3:
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Our goal is to provide framings for the moduli spaces in a flow category, in such a way that they can be
glued together nicely. To do this, we embed the moduli spaces into some high dimensional Euclidean spaces
and pick framings for their normal bundles there.

First, recall that for finite dimensional smooth manifolds X, we have the Whitney embedding theorem,
which guarantees that we can find some large N such that there exists an embedding X ↪→ RN .

In a way, this theorem tells us that Euclidean space Rd are the ’model smooth manifolds’. We already
knew that, of course, but this raises the question,

“what is a model ⟨n⟩-manifold?”

We already saw that manifolds with corners are modeled after Rd
+, so we will certainly need at least

that much information. The important difference between ⟨n⟩ manifolds and run-of-the-mill manifolds with
corners is the painting of the faces; so, we need model spaces that are also ⟨n⟩-manifolds, where it is very
clear how to paint the faces with n colors.

Definition 7.3.12. Let d⃗ = (d0, d1, . . . , dn) ∈ Nn+1 (here N = N ∪ {0}), and let

Ed⃗
n := Rd0 ×

(
R+ × Rd1

)
×
(
R+ × Rd2

)
× · · · ×

(
R+ × Rdn

)
.

Note that there is a copy of R+ for each i ∈ {1, . . . , n}. The boundaries of these give us n different faces.
The ⟨n⟩-manifold structure is given by

∂i(Ed⃗
n) = Rd0 ×

(
R+ × Rd1

)
× · · · ×

(
{0} × Rdi

)
× · · · ×

(
R+ × Rdn

)
.

The appropriate, structure-preserving notion for an embedding of ⟨n⟩-manifolds, for our framing purposes,
is the following:

Definition 7.3.13. A neat embedding ι of an ⟨n⟩-manifold is a smooth embedding

ι : X ↪→ Ed⃗
n

for some d⃗ ∈ Nn+1, where

• ι−1(∂iEd⃗
n) = ∂iX for all i (respecting the ⟨n⟩-manifold structure) and

• whenever a stratum of X abuts a lower-dimensional (higher-codimensional) stratum of Ed⃗
n, it does

so perpendicularly. This is the neat part; see Remark 7.3.15 for a more precise definition.

Example 7.3.14. The triangle, as a 2-dimensional ⟨3⟩-manifold, neatly embeds in E(0,0,0,0)
3 = (R+)

3 as an
octant of the unit 2-sphere.

Remark 7.3.15. Lawson–Lipshitz–Sarkar note that a ⟨n⟩-manifold can be viewed as a functor 2n → Top
by

X(u) =

{
X if u = 1⋂

i∈{i | ai=0} ∂iX otherwise.

For example, here is the hexagon as a cube-shaped diagram of topological spaces:



104 MELISSA ZHANG

The second requirement in Definition 7.3.13 becomes:

For all u < v in {0, 1}n, X(v) ⊥ Ed⃗
n(u).

There is an analogue to the Whitney embedding theorem for ⟨n⟩-manifolds, which we will paraphrase
loosely:

Fact 7.3.16 (see Lemma 3.11 of [LS14] for more detail). Let X be a ⟨n⟩-manifold. Given a neat embedding

ι of ∂X ↪→ Ed⃗
n, there exists a neat embedding of X ↪→ Ed⃗′

n for some d⃗′ ≥ d⃗, induced by ι. Here, d⃗′ ≥ d⃗ means
d′i ≥ di for all i.

Note that, since we are quite capable of neatly embedding finite sets of points, by induction we know that
every ⟨n⟩-manifold can be neatly embedded.

We now return back to framing flow categories, and give very rough definitions.
A neat embedding of a flow category C is a collection of neat embeddings for all the moduli spaces in C ,

in a coherent way so that composition of moduli spaces is respected. (See Definition 3.16 of [LS14] for more
detail.)

• To make sure all the embeddings are in the same spatial universe (in the non-technical sense), we

have to first pick a bi-infinite sequence d⃗ : Z → N. Don’t worry, we’ll only use a finite subsequence
of this, because C only has finitely many objects.

• Then, let M(i, j) be the union of all the moduli spaces M(x, y) where gr(x) = i and gr(y) = j;

neatly embed M(i, j) into pieces edgy spaces of the form E(dj ,dj+1,...,di−1)
i−j−1 . Call these embeddings

ιi,j .
• If p ∈M(x, y) and q ∈M(y, z), then the composition condition requires that

ιx,z(q ◦ p) = (ιy,z(q), 0, ιx,y(p)).

The most important thing to note here is that ιx,y and ιy,z determine ιx,z(q ◦ p).
Observe that at this point, we haven’t really actually picked a framing for anything. However, we do have

moduli spaces embedded in Euclidean spaces, with normal bundles ready to be framed.
We can now give a rough definition of framed flow categories:

Definition 7.3.17. A framed flow category is a neatly embedded flow category C plus a coherent framing
of the normal bundles.

The word ‘coherent’ is pulling a lot of weight here. This is the point at which we make sure we’ll actually
be able to glue our moduli spaces together to make a nice space. The main requirement is that the product
framing of the normal bundles of two embeddings of moduli spaces ν(ιy,z) × ν(ιx,y) equals the pullback
framing of ◦−1ν(ιx,z) induced by the composition map.

Finally, Lipshitz–Sarkar give explicit instructions for how to take the data of a framed flow category and
transform them into a CW-complex (of some dimension). See Figures 3.3 and 3.4 of [LS14] to get a sense of
how to do this. We talked about these pictures in class, but I will not be including my commentary in these
notes.
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7.4. A framed flow category for Khovanov homology. Let L be an oriented link, and let D denote a
diagram for L with n crossings. Lipshitz–Sarkar build the framed flow category for Khovanov homology as
follows:

(1) Frame the n-dimensional cube flow category CC(n).
(2) Build a Khovanov flow category CK(D) with moduli spaces corresponding to decorated resolution

configurations for D.
(3) Make sure that the moduli spaces of CK(D) are all trivial covers of the corresponding moduli spaces

in CC(n).
(4) Conclude that framings can be lifted from CC(n) to CK(D), thereby boosting CK(D) to a framed

flow category.

There is a lot to say and prove about all of these steps, but we will give an overview of the key philosophical
ideas in each step (as opposed to the key technical ideas).

7.4.1. Framing the cube flow category: obstruction theory. Let’s first talk a bit about the idea behind ob-
struction theory.

Consider the unknot U ⊂ S3. A framing λ of U is a continuous choice of frame (orthonormal basis) for
the fibers of the normal bundle.

This is equivalent to an integral choice of longitude on the torus ∂ν(U), the boundary of a tubular
neighborhood of U :

Here are two different framings for U .

Notice that the 0-framed annulus can be extended to an embedded disk in S3 bound by U , where as the
(−1)-framed annulus cannot.
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In this sense, the value λ ∈ Z, when nonzero, provides an obstruction to extending the framed annulus to
a disk.

Pictorially, we can think of λ as a longitude. But another way to think about λ is as an element of
π1(O(2)), as follows. The columns of a matrix in O(2) give an orthogonal basis for the fiber of the normal
bundle over a point p ∈ U . Moving p all the way around U is a loop in O(2), which corresponds to an
element of π1(O(2)). You may convince yourself why we only care about these loops up to homotopy.

In order to frame the cube flow category CC(n), Lipshitz–Sarkar first prove that there exists a coherent set
of orientations for the moduli spaces (we didn’t really talk much about this). Then, suppose we are given a
coherent orientation and a neat embedding of the CC(n) (both of which we know exist), we wish to frame the
moduli spaces, starting from the 0-dimensional ones, whose framings are given by the orientations chosen,
and then building up to framings for the moduli spaces of higher dimension — if there is no obstruction.

Suppose you already have a coherent framing of all the moduli spaces of dimension < k. This data
produces an obstruction class

o ∈ Ck+1(C(n), πk−1(O)).

• Here, C(n) is ‘the cube’ of dimension n, i.e. the CW-complex you get from gluing all the flow lines
between critical points of fn(x1, . . . , xn) (from (13)).

• O = colimk→∞O(k), the colimit of all the orthogonal groups of finite dimension, related by inclusion
maps.

While we will not discuss how the obstruction class o is obtained, but we can still get an idea of why o makes
sense as the obstruction to extending the framing to the k-dimensional moduli spaces. Recall that all our
moduli spaces are permutahedra, which are in particular homeomorphic to balls of various dimensions.

• A (component of a) k-dimensional moduli space corresponds to a k + 1-dimensional cell in the CW
decomposition of C(n) given by the spaces of flow lines.

• A framing of a k-dimensional moduli spaceM(x, y) is a choice of an orthogonal basis for the fiber
of the normal bundle above every point. So, depending on how high-dimensional the space you’re
embedded in is, your normal bundle is some rank, and you’d be working with that many vectors in
your orthogonal bases.

• For the framing along the boundary ∂M(x, y) ∼= Sk−1 to extend to a framing ofM(x, y), we need the
boundary framing to ‘not be twisted,’ or more precisely, for the map Sk → O to be nullhomotopic.

Lipshitz–Sarkar show that indeed, the cochain o is in fact a coboundary, and modifications can be made
so that the cochain itself vanishes, so that there is no obstruction.

7.4.2. Resolution configurations, ladybug configuration. In the Khovanov flow category, the objects are in
correspondence with the distinguished generators of the Khovanov chain complex.

Remark 7.4.1. This time, I really do mean the chain complex, rather than the technically cohomologically
graded version we’ve been discussing all quarter. But, since we are just getting a sense of the Khovanov
stable homotopy type construction, I will not spend time worrying about things like whether we should be
using 2 or 2op. Perhaps take this as a warning that I am not being careful about these conventions here.

The 0-dimensional moduli spaces are in correspondence with the components of the differential between
distinguished generators (the ‘arrows’).

If we think of the ‘dots and arrows’ picture of the Khovanov chain complex as a direct graph, then the
1-dimensional moduli spaces come from paths of length 2 (these are the analogues to once broken flow lines
in the Morse picture). We capture these moduli spaces by drawing resolution configurations.

We will now introduce some vocabulary words in context, via the following very important example.
Consider the cube of resolutions for this two-component unlink diagram:
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• At vertex 00 is a complete resolution, along with two red arcs indicating that there are two crossings
at which we have yet to switch the resolution to the 1 resolution. In other words, we have yet to
surger along the red arcs. Yes, we are doing surgery on 1-manifolds.

• At the 10 and 01 resolutions, we have already surgered along one red arc, but have yet to surger
along the other.

• At the 11 resolution, all red arcs have been surgered, so there is nothing left to do.

These complete-resolutions-with-red-arcs are called resolution configurations. These diagrams are useful
because they point out ’subcubes’, in the sense that the 00 resolution configuration in the above example
can represent the whole 2-dimensional cube that you get from surgering the red arcs in the two different
orders.

In general, a resolution configuration need not only describe a cube whose extremal vertex is the all-ones
resolution. By omitting some red arcs, one can describe a subcube somewhere in the middle of the cube of
resolutions. In other words, the 2D cube of resolutions above could appear somewhere within a much bigger
cube of resolutions for a much more complicated link diagram.

A labeled resolution configuration additionally specifies a particular distinguished generator. For example,
for the unlink diagram above, at quantum grading grq = 0 we see the following subcomplex:

I can specify this entire subcomplex by drawing

In other words, a labeled resolution configuration is a pair (D,x) where D is a resolution configuration
and x is a labeled of all circles in D with v+ or v−.

Finally, a decorated resolution configuration specifies both the beginning and the end of the path. In the
example above, there was a unique distinguished generator at the 11 resolution that length-2 paths from the
shown generator map to. In general, this might not be true. So a decorated resolution configuration also
specifies which distinguished generator your path should end at.

In other words, a decorated resolution configuration is a triple (D,x, y) where (D,x) and (s(D), y) are
both labeled resolution configuration; here, s(D) means ‘result of surgery along the red arcs of D’.
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So, ifD is a resolution configuration with k red arcs, we say that (D,x, y) is an index k decorated resolution
configuration. These should correspond to (k−1)-dimensional moduli spaces in the Khovanov flow category.

Notice that in our example, there were two possible ways that we could build our 1-dimensional moduli
spaces:

A ‘correct choice’ (i.e. a choice that allows us to obtain a framed flow category) will be determined by the
constraints in the following section.

7.4.3. Khovanov flow category as a trivial cover.

Definition 7.4.2. A grading-preserving functor F : Ĉ → C between flow categories is a cover if, for all

x, y ∈ Ĉ , wheneverMĈ (x, y) ̸= ∅, the map of ⟨gr(x)− gr(y)− 1⟩ manifolds

(14) F :MĈ (x, y)→MC (F (x),F (y))

• respects the ⟨gr(x)− gr(y)− 1⟩ manifold structures,
• is a local diffeomorphism, and
• is a covering map.

The cover is trivial if the map (14) is a trivial covering map.

Note that the term ‘trivial’ makes it sound like the whole covering situation is somehow trivial; this is
not true, because moduli spaces can glue together along their boundaries in many interesting ways.

Trivial covers are particularly important to the construction at hand, because Lipshitz–Sarkar essentially
prove the following:

Proposition 7.4.3 ([LS14], Proposition 5.2, (E-3), casually stated). If the Khovanov flow category trivially
covers the cube flow category CC(n), then we can use the framing of CC(n) to frame the Khovanov flow
category.

We return to the ladybug configuration to see the difference between trivial and nontrivial covers:
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We assume that all the 0- and 1-dimensional moduli spaces are trivial covers, as shown.
In order to make sure the covering is trivial for the hexagonal 2-dimensional moduli space, we have to

make sure that, on its boundary, we get two 6-cycles (left), rather than a single 12-cycle (right).
Lipshitz–Sarkar cleverly use the orientation of the diagram plane to make a global choice for any ladybug

configurations that arise, ensuring that all covering maps for hexagons look like the picture on the left.

7.4.4. Finishing up. It turns out that this is the last important choice to make! Moduli spaces of dimension
k ≥ 3 are copies of the permutahedron Pk+1, which is homeomorphic to Bk (recall that it’s the convex hull of
a bunch of points). This means the boundary of the moduli space is homeomorphic to Sk−1, which is simply
connected, and therefore only have trivial covers! Recall that connected covering spaces of X correspond to
subgroups of π1(X, ∗).

To finish up:

• We can build our moduli spaces inductively, and frame them using our framing of the cube flow
category. This gives us a framed flow category refining the Khovanov chain complex we started
with.

• Next, use the Cohen–Jones–Segal construction to build a high-dimensional CW-complex from the
framed flow category, called the realization.

• Finally, take the suspension spectrum of the realization (and formally desuspend appropriately to
get the correct homological gradings) to get the link invariant XKh.

Remark 7.4.4. Actually, we get a spectrum for each quantum grading grq = j:

XKh(L) =
∨
j

X j
Kh(L)

7.5. The Burnside functor approach. The reference for this section is [LLS20].
Lawson–Lipshitz–Sarkar give a different way to build equivalent Khovanov spectra, via the following

process:

• Start with the data of the Khovanov complex (but not totalized), drawn as a (commuting) diagram
of abelian groups and maps between them. If a link diagram has n crossings, then we can think of
this diagram as a functor 2n → ModZ.

• Make some choices (i.e. add information) to lift this to a functor 2n → B, where B is the Burnside
2-category.

• Use the Pontrjagin-Thom construction to turn this data into a functor (2op)n → Top∗.
• Check that this diagram of topological spaces (actually, wedges of spheres of some large dimension)
is homotopy coherent, and then take the homotopy colimit to obtain a space. (Then, as usual, take
the suspension spectrum and desuspend to make up for the large dimension of the spheres you used.)
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While we sketch out ‘Burnside-functor’ approach to building XKh, look out for the following important
points we encountered while discussing the flow categories construction method:

• What elements of this construction correspond to the higher-dimensional moduli spaces?
• Where do we make the ladybug matching choice?
• At what index (for the resolution configurations) can be stop making choices, and why?

7.5.1. The Burnside category. The Burnside category B is a 2-category, meaning that there are objects,
morphisms, and also morphisms between morphisms (level 2 homomorphisms). In B:

• Objects are finite sets X
• 1-morphisms are finite correspondences: a morphism in Hom(X,Y ) is a diagram of set maps

A

X Y

sA tA

where sA and tA are called the source and target set maps, respectively.
You can think of the elements of A as ‘arrows’ form points in X to points in Y ; an arrow a ∈ A

has a source point and a target point, and sA(a) and tA(a) are just telling us which points these are.
• Composition of 1-morphisms is given by pullback (i.e. fiber product): the composition of (A, sA, tA) ∈

Hom(X,Y ) and (B, sB , tB) ∈ Hom(Y,Z) is the finite correspondence (C, sA◦sC , tB◦tC) ∈ Hom(X,Z)

C

A B

X Y Z

sC tC

sA tA sB tB

where

C = A×Y B = {(a, b) ∈ A×B | tA(a) = sB(b).

The maps sC and tC are induced by projection from A×B, i.e. sC((a, b)) = a and tC((a, b)) = b.
• 2-morphisms are isomorphisms of correspondences: given (A, sA, tA) and (B, sB , tB) in Hom(X,Y ),

an element of 2Hom(A,B) is an isomorphism of sets f : A → B such that the following diagram
commutes:

A B

X Y

f(∼=)

sA

tAsB

tB

7.5.2. Cube-to-Burnside functor. Given a Khovanov cube-shaped complex 2n → ModZ, we want to build a
lift of this functor to 2n → B. Here is how we define the new functor.

(Objects) At each vertex u of the cube, the distinguished generators (pure tensors in V ⊗|π0(Du)|) become
the elements of the finite set at u.

(1-Morphisms) The arrows in the Khovanov differential between distinguished generators determine the
finite correspondences.

For example, consider the merge map m : V ⊗ V → V .
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On the left is our familiar dots-and-arrows picture, but now each arrow has a name. On the right is the ...
corresponding... correspondence in the Burnside category.

(2-Morphisms) To define a 2-functor from 2n, we technically need to think of 2n as a 2-category as well.
We do this by asserting that 2n has no non-identity 2-morphisms.

Defining our 2-morphisms is where new choices are made. For an example, we will once again study the
ladybug configuration (see §7.4.2).

Here is the usual dots-and-arrows picture of the chain complex (at the interesting quantum grading), but
now the arrows have names:

Translating to a diagram in the Burnside category, we have the following picture, where a blue lines are
parts of source maps, and green lines are parts of target maps.
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Now let’s consider the 1-morphisms we get from length-2 paths through the cube; these are compositions
of the arrows in the dots-and-arrows picture.

• Along the top half of the cube, the composition of 1-morphisms A = {a1, a2} and B = {b1, b2} yields
a 1-morphism C ∈ Hom(X = {x}, Z = {z}) containing two elements,

c1 = (a1, b1) and c2 = (a2, b2).

• Along the bottom half of the cube, we get a different composite 1-morphism C ′ ∈ Hom(X,Z) also
containing two elements,

c′1 = (a′1, b
′
1) and c′2 = (a′2, b

′
2)

An element of 2Hom(C,C ′) is a choice of isomorphism between these two 2-element sets. There are exactly
two possible isomorphisms (either c1 7→ c′1 or c1 7→ c′2).

Lawson–Lipshitz–Sarkar check through all the combinatorics in the Khovanov cube, and this resolution
configuration is, once again, the most interesting.

7.5.3. Burnside functor to homotopy coherent diagram of wedges of spheres. We now use the Burnside functor
2n → B to obtain a diagram of topological spaces, using the Pontrjagin-Thom construction. We will stick
with our running ladybug example.

First, replace all the objects in the Burnside functor diagram with k-dimensional disks, with the size of
the disks increasing with the cube grading |u| =

∑
i ui. In the drawing below, k = 2:
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The correspondences tell us where to embed smaller disks into larger disks, so that images are disjoint.
Beware: The following picture is just for showing you how we’re embedding the smaller disks into bigger

ones. For example, I’ve drawn the image of the embeddings Dx ↪→ Dyi (i = 1, 2), in order to indicate a
multi-embedding (see Remark 7.5.1) of Dx in Dy1 ⊔ Dy2 .

Remark 7.5.1. Beware that what I’ve drawn is not a map of topological spaces. This is not even a function,
but rather a multifunction, where each point maps to multiple points. For this reason, I will be referring to
these disk embeddings as ‘multi-embeddings’. I don’t believe this is standard language. For more technical
language, you can look up the little boxes operad.

(15)

We are now set up to build a functor (2op)n → Top∗. First, at each vertex of the cube, identify all of the
boundaries to a single basepoint ∗:

We can get a map from S2
y1
→ S2

x by collapsing everything outside of the image of Dx ↪→ Dy1
to the

basepoint in S2
x. The same process gives us a map S2

y2
→ S2

x. Combined, we obtain a map of based

topological spaces S2
y1
∨ S2

y1
→ S2

x. The map from S2
z → S2

y1
∨ S2

y1
is slightly more interesting, but defined
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the same way. Try to visualize this yourself, by imagining that you are, perhaps, making a balloon animal,
grabbing a ball of dough from a large mass of dough, or balling up some mozzarella from a vat of curds.

Even more interesting is the composition of embeddings.

• Along the top of the cube in (15), we get two homeomorphic images of Dx inside Dz. These are the
blue disks inside the orange circles.

The composite multi-embedding of Dx to Dz agrees with the collapse map S2
z → S2

x : we crush
everything outside of the two images of Dx to the basepoint, and get a degree-2 map S2

z → S2
x.

• Along the bottom of the cube, we get a different set of homeomorphic images of Dx inside Dz. These
are the blue disks inside the red circles.

This path gives us a different degree-2 map S2
z → S2

x.

In order to make sure that the two maps of topological spaces S2
z → S2

x are homotopic, we need the
dimension k to be large enough (we will discuss more about this soon). But because this square is potentially
only a small part of a much larger cube, we actually need to pick specific homotopies between the two maps.
To do this, we use the 2-morphisms we chose when we built the Burnside functor.

From the Burnside functor, we get a particular matching of the orange-blue disks (associated with C =
{c1, c2} in the Burnside functor) with the red-blue disks (associated with C ′ = {c′1, c′2}). Suppose we chose
the matching ci 7→ c′i. To choose a homotopy, we just need to pick two paths: one that takes the orange-blue
disk associated with c1 to the red-blue disk associated with c′1, and another that takes the orange-blue disk
associated with c2 to the red-blue disk associated with c′2

After choosing these homotopies, we also need to choose homotopies among homotopies when we zoom
out and look at an index-3 subcube (or index-3 resolution configuration), and then homotopies of homotopies
of homotopies ... etc. If we can successfully find homotopies at all levels all the way to index-n resolution
configurations (recall that our link diagram has n crossings), then we have a homotopy coherent diagram of
topological spaces.

We want to make as few choices as possible. To do this, we just make sure k is sufficiently large, because
this will ensure that all possible choices are effectively equivalent (i.e. homotopic). Observe that the data of
a multi-embedding e : Dx → Dy can be captured by just recording the centers of the image disks. Suppose
there are m image disks. Then, e is just an element of Conf(Dy,m points), the configuration space of m
points inside the (k-dimensional) disk Dy.

Fact 7.5.2. The configuration space of finitely many points in a k-dimensional disk (ball) is (k−2)-connected,
i.e., for any j ≤ k − 2,

πj(Conf(Dk,m points) = 0.

Using this fact, we see that as long as k ≥ n+2, no matter how we choose to multi-embed our disks, our
diagram will be homotopy coherent.

At this point, we can proceed to the last step, where we use this diagram to build a space, by throwing
our homotopy coherent diagram into a machine that spits out the homotopy colimit.

7.5.4. Homotopy colimit. If you want to see a concrete model of a homotopy colimit of based topological
spaces, you can check out the reference for this whole subsection, [LLS20].

Instead, let’s talk about the significance of homotopy colimits in general, given that we are currently in
possession of a homotopy coherent diagram of topological spaces (2op)n → Top∗.

When we work with topological spaces, we really consider them up to homeomorphism. When I take a
colimit of a diagram of topological spaces, the resulting space should be well-defined up to homeomorphism.

On the other hand, in homotopy theory, we want to consider spaces up to homotopy equivalence. When
I take a colimit of a diagram of topological spaces, I should expect that if I replace one of the spaces in
the diagram with something homotopy equivalent to it, that I should get the same colimit. But this is not
always true, as evidenced by the following classic example.

Consider the two diagrams below (ι∂ means ‘inclusion of boundary’):
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S1

D2 ∗
ι∂

S1

∗ ∗

In the second diagram (the one on the right), we’ve replaced D2 with a homotopy equivalent space, ∗.

Remark 7.5.3. For this particular shape of diagram, the colimit is called a pushout.
Let’s briefly recall how pushouts work in the category of sets, for simplicity. Given a diagram of sets

A B

C

β

γ
the pushout is the set B ⊔ C/ ∼ where b ∼ c iff there exists some a ∈ A such that β(a) = b

and γ(a) = c. Colimits are a generalization of this.

The colimit of the diagram on the left is S2, where as the colimit of the diagram on the right is a one-point
space:

These spaces are not homotopy equivalent! The problem is that the colimit on the right is too degenerate.
To fix this, we thicken the pieces before we glue:

This time, for each map S1 → ∗, we first replace S1 with S1 × I, and then glue one end to ∗. Then, we
glue the two pieces together.

On the right, we see that after gluing, we indeed get an S2, which now agrees with the colimit of the first
diagram we saw.

This tells us that S2 is the homotopy colimit (or homotopy pushout) of both diagrams.
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The takeaway is that the Burnside functor approach to building XKh is meant to produce a stable homotopy
type rather than a homeomorphism class of topological spaces. This flexibility allows us to actually obtain
an invariant of the link (under Reidemeister moves of the diagram). So, when we build the space, we need
to treat everything up to homotopy.

8. Homological Skein Invariants for 4-manifolds

This section serves a motivational introduction toward skein lasagna modules, which were introduced by
Morrison–Walker–Wedrich in [MWW22]. We will be brief on details; a forthcoming set of notes written with
Mike Willis will focus more heavily on homological skein invariants; see https://indico.ictp.it/event/

10839.

8.1. 4-dimensional exotica. This section is based on Tye Lidman’s 2015 IAS 15-minute talk [fAS15].
Suppose we are given two smooth 4-manifolds. How do we tell whether they are diffeomorphic, i.e.

smoothly equivalent?

Remark 8.1.1. Just as one can be ‘given’ a smooth knot via a knot diagram or as a braid closure (or Gauss
code, PD code, etc.), there are different ways a 4-manifold can be presented. We will use Kirby diagrams,
which essentially describe a handle decomposition of the smooth 4-manifold.

In 3D, there is little difference among the smooth and a priori less smooth (e.g. PL, topological) categories.
Indeed, Reidemeister’s theorem was actually proven by studying PL knot diagrams!

However, in 4D, the categories are very different. In fact, 4D seems to be the weirdest dimension. Compare
the following two theorems:

• Stallings [Sta62] proved that, for d ̸= 4, if X is homeomorphic to Rn (i.e. topologically equivalent to
Rn), then X is in fact diffeomorphic to Rn (i.e. smoothly equivalent to Rn).

• Taubes [Tau87] proved that there exist uncountably many smooth manifolds homeomorphic to R4,
up to diffeomorphism! (See also [Gom83] and [FT86].)

Notation 8.1.2. Let us set some notation and terminology for the remainder of this section.

• If we consider a manifold only up to its homeomorphism class, we call it a topological manifold. If
X and Y are homeomorphic, we write X ≃ Y .

• If we consider a smooth manifold up to its diffeomorphism class, we call it a smooth manifold. If X
and Y are diffeomorphism, we write X ∼= Y .

Let’s first restrict ourselves to closed, connected, oriented, simply-connected 4-manifolds. To
determine whether two such smooth manifolds, X1 and X2, are diffeomorphic, we can first forget their
smooth structure and check if they’re homeomorphic.

Fortunately, Freedman proved that the topological 4-manifold invariant called the intersection form clas-
sifies these manifolds. So, if the intersection forms are inequivalent, then X1 and X2 are certainly not
diffeomorphic, since they aren’t even homeomorphic.

So, it remains to distiguish between pairs of smooth and homeomorphic manifolds. In general, if we have
two homeomorphic but non-diffeomorphic objects, we call them an exotic pair.

Here is the most famous open question about exotic manifolds:

Conjecture 8.1.3. (Smooth Poincaré Conjecture in Dimension 4) There are no exotic S4’s. In other words,

X4 ≃ S4 =⇒ X4 ∼= S4.

8.2. Exotic R4’s via Rasmussen’s invariant. To motivate the use of Khovanov homology in developing
smooth 4-manifold invariants, we first show how Rasmussen’s invariant can be used to construct exotic R4’s.

8.2.1. Relating 4D topology and knot theory.

Definition 8.2.1. Let K be a smooth knot in S3. The 0-trace of K, denoted X0(K), is the manifold
obtained by attaching a 4-dimensional 0-framed 2-handle to B4 along K. Recall that the 0-framing is the
Seifert framing. This is a smooth 4-manifold whose closed 3-manifold boundary is S3

0(K), the 0-surgery of
S3 along K.

https://indico.ictp.it/event/10839
https://indico.ictp.it/event/10839
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The Trace Embedding Lemma below is the powerful lemma that will allow us to translate our knowledge
of knots (e.g. Rasmussen’s invariant from Khovanov homology) to knowledge about 4-manifolds.

It is true in both the smooth and topologically locally flat categories. Roughly speaking, a surface F is
topologically locally flatly embedded in a 4-manifold W if for every point x ∈ F , there is a neighborhood U
of x and a chart that identifies U with a neighborhood of R2 ⊂ R4. In other words, locally, it can be make
to look flat.

Lemma 8.2.2 (see [Pic20], Lemma 1.3). (Trace embedding lemma) A knot K embedded in S3 is smoothly
slice (resp. topologically locally flatly) if and only if X0(K) embeds smoothly (resp. topologically locally
flatly) into S4.

Remark 8.2.3. Note that smooth embeddings are automatically topologically locally flat embeddings.
Because the latter term is too long, we usually just say ‘topologically’ or ‘locally flatly’ embedded.

However, do not take this to mean ‘homeomorphically’. For example, for any knot K, there is a PL-disk
in B4 with boundary K: just cone K to a point. In general, the cone point of this disk is not locally flat!

Sketch of proof of Trace Embedding Lemma. The proof is similar in both categories; just replace the word
‘smooth’ with ‘locally flat’ throughout.

=⇒
Suppose K is slice; then there exists a slice disk D:

Attaching a neighborhood of the disk to a B4 along a neighborhood of K as shown below gives us an
embedded X0(K) inside S4:

Note that the framing of the attached handle is indeed the surface framing 0; this is clear if you are
familiar with framings as obstruction classes. To see this more intuitively, you could imagine floating D up
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to the S3 boundary to get an immersed surface with boundary K, and then modify the self-intersections to
get some (higher genus) Seifert surface for K.
⇐=
Now assume that there exists an embedding ϕ : X0(K) ↪→ S4. Consider the cartoon below.

• The orange is the embedded image of the core of the 4D 2-handle.
• The light green is the embedded image of the 4D 0-handle. This embedding might not look as nice
is as it is drawn!

• The dark green is the embedded image of a cone on K; it is smooth away from the yellow star, the
cone point p.

Let ν(p) be a very small neighborhood of the cone point p. This neighborhood looks like a standard B4.
Then, the intersection of the dark green cone and ∂ν(p) ∼= S3 is a copy of the knot K. Also, the dark

green cone, outside of ν(p), together with the core of the 2-handle, form a slice disk for this copy of K. □

8.2.2. Detour: Satellites and cables.

Definition 8.2.4. Let P be a link in the solid torus S1 ×D2, and let K be a knot in S3. Let ν(K) be a
tubular neighborhood of K (a thickening of K).

Both S1 × D2 and ν(K) are solid tori. The former comes with a canonical framing, and ν(K) has the
canonical Seifert framing.

Let ϕ : S1 ×D2 → ν(K) be a diffeomorphism that preserves our canonical framings.
The satellite P (K) is the image of K under ϕ.
In the context of the satelliting construction, we call P the pattern and K the companion knot.
We can also choose a different framing for the satelliting procedure by pre-composing ϕ with some Dehn

twists.

Example 8.2.5. Here is an example pattern P = Wh and companion K = 31:
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The trefoil diagram shown above has writhe w = 3. It turns out that this means that the blackboard
(flat-on-paper) framing is 3 more (positive Dehn twists) than the Seifert framing.

Here is the blackboard framing:

Here is a Seifert surface for the trefoil:

Here is the Seifert-framed pushoff K+ in blue:
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Here are K and K+ without the Seifert surface:

We can use the following shorthand for the above diagram:

So, the (Seifert-framed) satellite Wh(31) is the following knot:

8.2.3. Back to exotic R4’s. To build an exotic R4, we will make use of a knot K that is

• topologically slice
• smoothly not slice.

We can find such knots by applying the following criteria:

• The Alexander polynomial of K is trivial: ∆K(t)
·
= 1. Freedman showed that if ∆K(t)

·
= 1, then K

is topologically slice [FQ90].
• The Rasmussen invariant of K is nontrivial: s(K) ̸= 0. Rasmussen showed, as we know, that
s(K) ̸= 0 means K is not smoothly slice [Ras10].

For example, one could choose the 2-twisted positive Whitehead double of the right-handed trefoil,
Wh+2(31).

If you know how to compute the Alexander polynomial, you can fairly quickly convince yourself that the
Whitehead double of any knot has trivial Alexander polynomial. (Actually, any framing will work too; see
Exercise 8.2.6.)
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On the other hand, Whitehead doubling generally complicates knots, and complicated knots are less likely
to be smoothly slice. Indeed, Hedden–Ording showed that s(Wh+2(31)) ̸= 0 (Theorem 1.1 of [HO08]).

Exercise 8.2.6. Let K be a knot in S3, and let Whn(K) be the n-framed Whitehead satellite of K. The
Alexander polynomial of Whn(K) is trivial (i.e. ∆Whn(K)(t)

.
= 1).

The following can be considered a corollary of Hedden–Ording’s example, or of Rasmussen’s slice genus
bound. The proof uses some facts we haven’t discussed in class, though.

Corollary 8.2.7. There exist exotic R4’s.

Proof. (This proof follows Shintaro Fushida-Hardy’s notes from Ciprian Manolescu’s course [FH20].)

Let K be a knot with ∆K(t)
·
= 1 but s(K) ̸= 0.

Since K is topologically slice, X0(K) topologically embeds in S4:

Pick a point x ∈ S4−X0(K); then S4−{x} is a topological R4. We will give this space a smooth structure
as follows.

• Let

Z = S4 −X0(K)− {x}.
Quinn showed that every open 4-manifold admits a smooth structure [Qui82, Corollary 2.2.3]. Pick
any such smooth structure; we now regard Z as a smooth manifold.

• X0(K) comes with a smooth structure induced by the handle decomposition.
• The shared boundary ∂Z ≈ ∂X0(K) is a 3-manifold, and actually has a unique smooth structure

[Moi52]; this means that there exists diffeomorphism ϕ : ∂Z → ∂X0(K).

Now build the open smooth 4-manifold

R = Z ∪ϕ X0(K).

Topologically, it is an R4. However, it cannot be the standard smooth R4 because X0(K) embeds into it
smoothly. Therefore R and R4 are an exotic pair.

□

8.3. Skein Lasagna modules from Khovanov homology. For many decades (and counting), many
state-of-the-art tools for detecting exotic 4-manifold pairs made use of gauge theory. In a way, gauge theory
makes explicit use of the smooth structures on 4-manifolds by capturing the differential topology of the
manifold; a priori, computing these invariants require solving partial differential equation.

On the other hand, Morrison–Walker–Wedrich’s skein lasagna modules feel radically different. There are
no PDEs present, and the sensitivity to smooth structure seems to only rely on the fact that Khovanov
homology sees smooth structure.
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Remark 8.3.1. There are probably many viewpoints out there, and I should really ask around to see
what how others would explain why Khovanov homology ‘sees’ smooth structure. But right now, my point
of view is that Khovanov homology ‘sees’ smooth structure because the TQFT requires cobordisms to be
decomposable into elementary cobordisms; this decomposition into smooth pieces implies that a functorial
invariant like Khovanov homology really requires smooth structure.

Let us first motivate the definition of skein lasagna modules by looking at the 3-dimensional inspiration
for this construction: skein modules. In particular, we will look at a particular example that makes use of
what we have already seen in this course: the Kauffman bracket skein module.

Definition 8.3.2. Let F be a surface. The Kauffman bracket skein module of F , denoted by KBSM(F ) is
the Z[A,A−1]-module

• generated by all link diagrams drawn on F
• modulo the local relations from the Kauffman bracket polynomial:

⟨#⟩ = 1 ⟨# ⊔D⟩ = (−A−2 −A2)⟨D⟩ ⟨ ⟩ = A⟨ ⟩+A−1⟨ ⟩

This is the original convention and differs slightly from our Definition 2.4.1.

We view KBSM(F ) as a 3-manifold invariant, because it captures “the knot theory” in the manifold F×I.

Remark 8.3.3. (1) For the simplest version of this invariant, we can evaluate A at a root of unity, such
as A = 1. If we set A = 1, then KBSM(D2, A = 1) ∼= Z.

(2) Since D2 ∼= R2, KBSM(D2) captures the knot theory in R3, which is the same as the knot theory in
S3. This is good, because if we want a 3-manifold invariant, we probably want it to be quite simple
on the simplest of 3-manifolds.

(3) Recall that the Kauffman bracket is not a knot invariant in our usual sense! Indeed, to recover
the Jones polynomial, we actually had to multiply by a monomial determined by the writhe of the
diagram. But this just means that the Kauffman bracket polynomial is a framed link invariant,
which is a valid notion of ‘knot theory’ in a 3-manifold. In fact, one could argue that this is more
natural, since the framing of a framed knot tells us whether it can bound a surface embedded in the
3-manifold, which is more geometric information.

In this section, we will discuss Morrison–Walker–Wedrich’s skein lasagna modules from KhR2, which is
the Khovanov–Rozansky homology categorifying the sl2 link polynomial (a.k.a. the Jones polynomial). This
differs slightly from Kh because it is a framed link invariant, and because the quantum degree is reversed
by convention (so degq(X) = 2 in KhR2). See Section 3.2 of [SZ24b] for more details on various conventions
appearing in the literature.

LetW be a 4-manifold, possibly with boundary, and let L ⊂ ∂W be a possibly empty link in the boundary
of W .

The skein lasagna module of the pair (W ;L) is a bigraded Q vector space

S20 (W ;L) =
⊕
i,j,α

S2,α0,i,j(W ;L)

where

• 2 indicates that we are working with KhR2,
• i is the homological grading,
• j is the quantum grading, and
• α ∈ H2(W,L) is a relative 2nd homology class.

Also, 0 is the blob grading, which we will not discuss. See [MWW22].
This module is defined similarly to skein modules for 3-manifolds: there is a ridiculously large set of

generators, but we then impose some local relations.
At this point, please clear the variable i so that we can use it to index things again.

Definition 8.3.4. Refer to the cartoon below while reading the definition.
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A lasagna filling for the pair (W,L) is the data

F = (Σ, {Bi, Li, vi}ki=1)

where

• each Bi is a B
4 embedded in the interior of W

• Li is a link in ∂Bi
∼= S3

We can’t compute the Khovanov(-Rozansky) homology for L ⊂ ∂W because it’s some random 3-
manifold, but we sure can compute Khovanov homology for the Li in these S3 boundaries of 4-balls!

• vi is a class in KhR2(Li)

• Σ is a framed, oriented, possibly disconnected surface properly embedded inW\
⋃

i

◦
Bi with boundary

−L ⊔
∐

i Li (with the correct framings!)

Definition 8.3.5. The KhR2 skein lasagna module of the pair (W ;L) is

S20 (W ;L) = Z⟨lasagna fillings F for (W ;L)⟩/ ∼

where the relations ∼ are generated by the following imposed equivalences:

• (Isotopy) Σ is considered up to isotopy rel boundary. If you’re concerned about isotopy of the Li,
note that the next relation takes care of this.

• (Nesting) Refer to the previous cartoon. Suppose we have two lasagna fillings

F = (Σ, {Bi, Li, vi}ki=1) and F = (Σ′, {B′
i, Li, v

′
i}ki=1)

that are identical except within a ball B1 where B′
1 ⊂ B1. That is, (Bi, Li, vi) = (B′

i, L
′
i, v

′
i) for all

i ̸= 1, and Σ′ \B1 = Σ.
Let Σ′′ = Σ′ \ Σ. If we also have KhR2(Σ

′′)(v′1) = v1, then F ′ ∼ F .
In basic point-set topology, we compare open sets by looking at smaller open sets inside inter-

sections. This is the same idea; we require also that the labels are coherent with respect to the
TQFT.

Not many examples have been computed thus far; most computations use Manolescu–Neithalath’s cabled
Khovanov homology (§8.4), to be discussed shortly. Here is perhaps the most important example that you
can compute right now.

Exercise 8.3.6. Let L ⊂ S3 be a link. Prove that

S20 (B4;L) ∼= KhR2(L).
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8.4. Cabled Khovanov homology. In [MN22], which is the reference for this subsection, Manolescu–
Neithalath define cabled Khovanov-Rozansky homology and show that it is isomorphic to the skein lasagna
module for the pair (W ;∅), where W is a 2-handlebody (i.e. no 1- or 3-handles).

Remark 8.4.1. There are of course many more results in [MN22]. They can also handle certain types of
links L ⊂ ∂W . See [MWW23] for how to work with more links and other handles.

Warning 8.4.2. We omit all grading information below. Remember that these are all graded invariants!
So, for example, there will be quantum degree shifts that make all the cobordism maps grading-preserving.

Be aware that the link L in the following theorem is not a link in the boundary of W , but rather the
framed link along which the 2-handles of W are attached.

Theorem 8.4.3 (see [MN22], Theorem 1.1). Let L be a framed ℓ-component link in S3, and let W be
the 4-manifold obtained by attaching 4D 2-handles along L. Then the cabled Khovanov homology of L is
isomorphic to the skein lasagna module ofW . That is, for α ∈ Zℓ ∼= H2(W ;Z), there is a graded isomorphism

KhR2,α(L) ∼= S
2,α
0 (W ;∅).

In this section, we give a sense of how Manolescu–Neithalath’s cabled Khovanov homology [MN22] is
computed, via an example computed independently in [SZ24b] and [RW24].

Throughout, refer to the drawing below:

(16)

Definition 8.4.4. LetK be a framed, oriented knot in S3, and let c ∈ Z. The c-cable of K is the c-component

link obtained by satelliting K with the c-component identity braid pattern 1̂c ⊂ S1 ×D2 according to the
framing of K.

Let L be a framed, oriented link in S3 with ℓ components, indexed as

L = K1 ∪K2 ∪ · · · ∪Kℓ.

Let α = (c1, c2, · · · , cℓ) ∈ Zℓ. The α-cable of L is the link obtained by replacing each Ki with the ci-cable of
Ki.
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Warning 8.4.5. Be aware that the following description is quite casual, and also only works for KhR2, not
the cabled KhRN homologies for N ≥ 3.

Below are the steps for computing KhR2,α(W ) where W = S2 × S2 and α = (1,−2) ∈ H2(W ;Z) ∼= Z2.

(1) Start with the framed, oriented Hopf link L as shown. The Kirby diagram fixes a choice of isomor-
phism between H2(W ;Z) and Z2 = Zblue ⊕ Zgreen.

(2) Build a directed system of framed links and cobordisms, in the shape of the poset Z2
≥0, as follows.

At (0, 0), associate the (1,−2)-cabling of L. Given a link at (x, y),
• associate the link at (x+1, y) by adding two antiparallel components into the cable on the blue
component.
• associate the link at (x, y+1) by adding two antiparallel components into the cable on the green
component.

The cobordism associated to the edges (x, y) → (x+ 1, y) and (x, y) → (x, y + 1) are dotted annuli
as shown in the drawing (16).

(3) Build a directed system D of graded vector spaces and linear maps in the same shape as above, by
performing the following replacements:
• The cabled link L at (x, y) has c1 = 1+2x blue components and c2 = −2+2y green components.
Grigsby–Licata–Wehrli show that there is a Sc1 × Sc2 action on the links, induced by braiding
the components with each other. By braiding, I mean passing hoops through each other; if
you’re not familiar with this, just imagine swapping components. Replace the link L at (x, y)
with the symmetrization of KhR2(L) under the induced Sc1 × Sc2 action.
• Along edges, replace the dotted annuli with the corresponding induced symmetrized cobordism
maps.

To symmetrize in a sensible algebraic manner, we work over a field of characteristic 0.
(4) Take the colimit of the directed system D to get the cabled Khovanov homology of L at homological

level α.

This description of the skein lasagna module of 4D 2-handlebodies makes some computations more
tractable. For example, by computing the colimits of the diagonals of the drawing (16) (and for all other
homological levels α), Ian and I were able to compute the KhR2 skein lasagna module of S2 × S2:

Theorem 8.4.6 (Sullivan-Zhang [SZ24b], Ren-Willis [RW24]). The KhR2 skein lasagna module of S2 × S2

vanishes.

8.4.1. Ian’s lecture. In the last lecture, Ian discussed Ren–Willis’ vanishing and non-vanishing results from
[RW24]:

• The vanishing criteria partly relies on Ng’s Thurston-Bennequin bound.
• The non-vanishing criteria rely on filtered, Lee version of skein lasagna modules.

In particular, he gave a sketch of the first non-gauge-theoretic exotic detection result for 4-manifolds using
cabled Khovanov homology (Theorem 1.1 of [RW24]).

We will not include more details here, as a forthcoming set of notes will delve into skein lasagna modules
more carefully.
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Zhang. On Khovanov homology and related invariants. In Research directions in symplectic and contact geometry
and topology, volume 27 of Assoc. Women Math. Ser., pages 273–292. Springer, Cham, [2021] ©2021.

[Che02] Yuri Chekanov. Differential algebra of Legendrian links. Invent. Math., 150(3):441–483, 2002.

[CJS95] R. L. Cohen, J. D. S. Jones, and G. B. Segal. Floer’s infinite-dimensional Morse theory and homotopy theory. In
The Floer memorial volume, volume 133 of Progr. Math., pages 297–325. Birkhäuser, Basel, 1995.
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[HKM07] Ko Honda, William H. Kazez, and Gordana Matić. Right-veering diffeomorphisms of compact surfaces with bound-
ary. Invent. Math., 169(2):427–449, 2007.
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